

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	VNCDoTool 0.9.0.dev0 documentation

vncdotool Documentation

	Introduction
	Quick Start

	Feedback

	Acknowledgements

	Installation
	Windows

	Usage
	Basic Usage

	Running Scripts

	Creating Scripts

	Library API

	Release History
	0.9.0 (2015-05-08)

	0.8.0 (2013-08-06)

	0.3.0 (2012-12-22)

	0.2.0 (2012-08-07)

	0.1.1 (2011-05-18)

	0.1.0 (2011-03-03)

	Code Documentation
	client Module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	VNCDoTool 0.9.0.dev0 documentation

Introduction

It can be useful to automating interactions with virtual machines or
hardware devices that are otherwise difficult to control.

It’s under active development and seems to be working, but please report any problems you have.

Quick Start

To use vncdotool you will need a VNC server.
Most virtualization products include one, or use RealVNC, TightVNC or clone your Desktop using x11vnc.

Once, you have a server running you can install vncdotool from pypi:

pip install vncdotool

and then send a message to the vncserver with:

vncdo -s vncserveraddress type "hello world"

You can also take a screen capture with:

vncdo -s vncservername capture screen.png

More documentation can be found on ReadtheDocs [http://vncdotool.readthedocs.org].

Feedback

Comments, suggestions and patches are welcome and appreciated.
They can be sent to via GitHub [http://github.com/sibson/vncdotool], vncdotool@googlegroups.com or sibson+vncdotool@gmail.com.

If you are reporting a bug or issue please include the version of both vncdotool
and the VNC server you are using it with.

Acknowledgements

Thanks to Chris Liechti, techtonik and Todd Whiteman for developing the RFB
and DES implementations used by vncdotool.
Also, to the TigerVNC [http://sourceforge.net/apps/mediawiki/tigervnc/index.php?title=Main_Page] project for creating a community focus RFB specification document

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	VNCDoTool 0.9.0.dev0 documentation

Installation

vncdotool is available on PyPI [https://pypi.python.org/pypi], so in most cases you should be able to simply run:

pip install vncdotool

vncdotool relies on a number of libraries, the two major ones are PIL [http://www.pythonware.com/products/pil/], the Python Imaging Library and
Twisted [http://twistedmatrix.com/], an asynchronous networking library.
While vncdotool should work with any recent version of these libraries sometimes things break.
If you are having issues getting things to work you can try using a stable set of libraries
and if you aren’t already using it, and you should be, use a virtualenv [http://www.virtualenv.org/].:

pip install virtualenv
virtualenv venv-vncdotool
XXX requirements.txt from vncdotool source tree
pip install -r requirements.txt
pip install -e .

Windows

If you are not familiar with Python, the most reliable way to install vncdotool is to use binary packages.
Currently, (Oct 2013) PIL only provides 32bit binary packages for Windows, so you will need to install a 32bit python.

	Download and install python-2.7.5.exe from the Python Downloads [http://python.org/download/] website

	Open up Powershell, and paste in the following:

[Environment]::SetEnvironmentVariable("Path", "$env:Path;C:\Python27\;C:\Python27\Scripts\", "User")

	Restart your Windows Machine

	Upon Restart, go to the Twisted Downloads [http://twistedmatrix.com/trac/wiki/Downloads] and get and install 32bit Twisted, Twisted-13.1.0.win32-py2.7.exe

	Download and install PIL-1.1.7.win32-py2.7.exe, from PIL Downloads [http://www.pythonware.com/products/pil/].

	Download ez_setup.py and get_pip.py and save them to your Python/Scripts folder, C:\Python27\Scripts

	Open up Powershell and type the following:

pip install pip --upgrade
pip install distribute
pip install setuptools --upgrade
pip install Twisted --upgrade
pip install vncdotool < -- Finally install vncdotool

	At a Powershell prompt:

vncdo.exe --server som.eip.add.res type "Hello World"

	If Hello World shows up on the remote machine that has a VNC server running then its time to celebrate.
Otherwise, first check you can connect from your local machine to the remote using a normal GUI VNC Client.
Once you get the normal GUI client working try vncdotool again and if you still have problems contact sibson+vncdotool@gmail.com.

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	VNCDoTool 0.9.0.dev0 documentation

Usage

Basic Usage

Once installed you can use the vncdotool command to send key-presses.
Alphanumerics are straightforward just specify the character. For other
keys longer names are used:

> vncdo key a
> vncdo key 5
> vncdo key .
> vncdo key enter
> vncdo key shift-a
> vncdo key ctrl-C
> vncdo key ctrl-alt-del

To type longer strings when entering data or commands you can use the type c
command, which does not support special characters:

> vncdo type "hello world"

You can control the mouse pointer with move and click commands.
NOTE, you should almost always issue a move before a click, as in:

> vncdo move 100 100 click 1

The following would seem to be equivalent but would actually click at (0, 0).
This occurs due to how click events are encoded by VNC, meaning you need to initialise the position of the mouse.:

> vncdo move 100 100
> vncdo click 1

If you have the Python Imaging Library (Pillow [http://www.pythonware.com/products/pil]) installed you can also
make screen captures of the session:

> vncdo capture screenshot.png

With Pillow [http://www.pythonware.com/products/pil] installed, you can wait for the screen to match a known image:

> vncdo expect somescreen.png 0

Putting it all together you can specify multiple actions on a single
command line. You could automate a login with the following:

> vncdo type username key enter expect password_prompt.png
> vncdo type password move 100 150 click 1 expect welcome_screen.png

Sometimes you only care about a portion of the screen, in which case you can
use rcapture and rexpect. For instance, if your login window appears at
x=100, y=200 and is 400 pixels wide by 250 high you could do:

> vncdo rcapture region.png 100 200 400 250
> vncdo rexpect region.png 100 200 0

Running Scripts

For more complex automation you can read commands from stdin or a file.
The file format is simply a collection of actions:

> echo "type hello" | vncdo -

Or if you had a file called login.vdo with the following content:

select the name text box, enter your name and submit
move 100 100 click 1 type "my name" key tab key enter

grab the result
capture screenshot.png

You could run it with the following command:

> vncdo login.vdo

Creating Scripts

While you can create scripts by hand it can often be a time consuming process.
To make the process easier vncdotool provides a log mode that allows a user to
record a VNC session to a script which is playable by vncdo. vnclog act as a
man-in-the-middle to record the VNC commands you issue with a client. So you
will have your vnclog connect to your server and your viewer connect to vnclog

vncviewer —> vnclog —> vncserver

For best results be sure to set your vncviewer client to use the RAW encoding.
Others encoding may work but are not fully supported at this time.:

The quickest way to get started is to run:

> vnclog --viewer vncviewer keylog.vdo

For more control you can launch the viewer seperately but be sure to connect
to the correct ports:

> vnclog keylog.vdo
> vncviewer localhost:2 # do something and then exit viewer
> vncdo keylog.vdo

By running with –forever vnclog will create a new file for every client
connection and record each clients activity.
This can be useful for quickly recording a number of testcases.:

> vnclog --forever --listen 6000 /tmp
> vncviewer localhost::6000
do some stuff then exit and start new session
> vncviewer localhost::6000
do some other stuff
> ls /tmp/*.vdo

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	VNCDoTool 0.9.0.dev0 documentation

Library API

As vncdotool is built on the Twisted [http://twistedmatrix.com/] framework it best intergrates into other Twisted Applications
That isn’t always an option so a syncronous API is under development.
It uses a seperate thread to run the Twisted reactor and communitcates with the main program using a threadsafe Queue.

To use the syncronous API you can do the following:

from vncdotool import api
client = api.connect('vnchost:display')

You can then call any of the methods available on
vncdotool.client.VNCDoToolClient and they will block until completion.
For example:

client.captureScreen('screenshot.png')
client.keyPress('enter')
client.expectScreen('login_success.png', maxrms=10)

This can be used to automate the starting of an Virtual Machine or other application:

vmtool.start('myvirtualmachine.img')
client.connect('vmaddress:123')
client.expectScreen('booted.png')
for k in 'username':
 client.keyPress(k)
client.keyPress('enter')
for k in 'password':
 client.keyPress(k)
client.keyPress('enter')
client.expectScreen('loggedin.png')

continue with your testing session or other work

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	VNCDoTool 0.9.0.dev0 documentation

Release History

0.9.0 (2015-05-08)

	add special keys [~!@#$%^&*()_+{}|:”<>?] to –force-caps, for servers that don’t handle them, Tyler Oderkirk, Aragats Amirkhanyan

	improve vnclog performance with TCP_NODELAY, Ian Britten

	by default pause 10ms between sending commands, better compatability with servers

	better handle screen resizing, Daniel Stelter-Gliese

	API, fix deadlocks due to threaded init of PIL, thanks Antti Kervinen

	API, support password protected server, thanks Antti Kervinen

	API, able to connect to multiple servers, Daniel Stelter-Gliese

	drop official support for py2.4 and py2.5

	use Pillow rather than PIL

Thanks to Jan Sedlák, Daniel Stelter-Gliese, Antti Kervinen, Anatoly Techtonik, Tyler Oderkirk and Aragats Amirkhanyan for helping make this release possible

0.8.0 (2013-08-06)

	improved documentation using sphinx

	regional capture and expect that operate on a portion of the display

	–force-caps, better compatibility when sending UPPERCASE to servers

	–timeout, exit with an error after a given number of seconds

	experimental syncronous API for easier intergration with non-Twisted apps

0.3.0 (2012-12-22)

	main program renamed to vncdo, vncdotool continues an alias for now

	use host:display, host::port syntax like other vnc tools, removed -d

	read/play commands from stdin or file

	vnclog, creates scripts from captured interactive sessions

	better control over mouse in screen captures with –nocursor
and –localcursor

	mousemove, sleep command aliases to match xdotool

	keyup/keydown commands for more control over keypresses

	send SetEncodings on connect, thanks Matias Suarez for fix

	debian packaging

	type “Hello World” now preserves capitalization

	basic compatibility with VNC 4.0 servers, found in some KVMs

	improved frameUpdate handling

	–warp to replay script faster than real-time

	–delay, insert a delay between sending commands

0.2.0 (2012-08-07)

	add pause, mouseup, mousedown, drag commands

	only require TWisted 11.1.0, so we can have py2.4 support

	
	bugfixes, thanks Christopher Holm for reporting

	
	vncdotool type -something now works

	no longer silently fail for unsupported image formats

0.1.1 (2011-05-18)

	add PIL to requires

	fix bug where incorrect mouse button is sent

0.1.0 (2011-03-03)

	first release

	commands: press, type, move, click, capture, expect

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	VNCDoTool 0.9.0.dev0 documentation

Code Documentation

client Module

Twisted based VNC client protocol and factory

	2010 Marc Sibson

MIT License

	
exception vncdotool.client.AuthenticationError

	Bases: exceptions.Exception

VNC Server requires Authentication

	
class vncdotool.client.VNCDoToolClient

	Bases: vncdotool.rfb.RFBClient

	
SPECIAL_KEYS_US = '~!@#$%^&*()_+{}|:"<>?'

	

	
bell()

	

	
buttons = 0

	

	
captureRegion(filename, x, y, w, h)

	Save a region of the current display to filename

	
captureScreen(filename)

	Save the current display to filename

	
cmask = None

	

	
commitUpdate(rectangles)

	

	
connectionMade()

	

	
copy_text(text)

	

	
cursor = None

	

	
deferred = None

	

	
drawCursor()

	

	
expectRegion(filename, x, y, maxrms=0)

	Wait until a portion of the screen matches the target image

The region compared is defined by the box
(x, y), (x + image.width, y + image.height)

	
expectScreen(filename, maxrms=0)

	Wait until the display matches a target image

filename: an image file to read and compare against
maxrms: the maximum root mean square between histograms of the

screen and target image

	
keyDown(key)

	

	
keyPress(key)

	Send a key press to the server

key: string: either [a-z] or a from KEYMAP

	
keyUp(key)

	

	
mouseDown(button)

	Send a mouse button down at the last set position

button: int: [1-n]

	
mouseDrag(x, y, step=1)

	Move the mouse point to position (x, y) in increments of step

	
mouseMove(x, y)

	Move the mouse pointer to position (x, y)

	
mousePress(button)

	Send a mouse click at the last set position

button: int: [1-n]

	
mouseUp(button)

	Send mouse button released at the last set position

button: int: [1-n]

	
paste(message)

	

	
pause(duration)

	

	
screen = None

	

	
updateCursor(x, y, width, height, image, mask)

	

	
updateRectangle(x, y, width, height, data)

	

	
vncConnectionMade()

	

	
vncRequestPassword()

	

	
x = 0

	

	
y = 0

	

	
class vncdotool.client.VNCDoToolFactory

	Bases: vncdotool.rfb.RFBFactory

	
clientConnectionFailed(connector, reason)

	

	
clientConnectionMade(protocol)

	

	
force_caps = False

	

	
nocursor = False

	

	
password = None

	

	
protocol

	alias of VNCDoToolClient

	
pseudocursor = False

	

	
shared = True

	

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	VNCDoTool 0.9.0.dev0 documentation

 Python Module Index

 v

 			

 		
 v	

 	[image: -]
 	
 vncdotool	

 	
 	
 vncdotool.client	

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	VNCDoTool 0.9.0.dev0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | K
 | M
 | N
 | P
 | S
 | U
 | V
 | X
 | Y

A

 	

 	AuthenticationError

B

 	

 	bell() (vncdotool.client.VNCDoToolClient method)

 	

 	buttons (vncdotool.client.VNCDoToolClient attribute)

C

 	

 	captureRegion() (vncdotool.client.VNCDoToolClient method)

 	captureScreen() (vncdotool.client.VNCDoToolClient method)

 	clientConnectionFailed() (vncdotool.client.VNCDoToolFactory method)

 	clientConnectionMade() (vncdotool.client.VNCDoToolFactory method)

 	cmask (vncdotool.client.VNCDoToolClient attribute)

 	

 	commitUpdate() (vncdotool.client.VNCDoToolClient method)

 	connectionMade() (vncdotool.client.VNCDoToolClient method)

 	copy_text() (vncdotool.client.VNCDoToolClient method)

 	cursor (vncdotool.client.VNCDoToolClient attribute)

D

 	

 	deferred (vncdotool.client.VNCDoToolClient attribute)

 	

 	drawCursor() (vncdotool.client.VNCDoToolClient method)

E

 	

 	expectRegion() (vncdotool.client.VNCDoToolClient method)

 	

 	expectScreen() (vncdotool.client.VNCDoToolClient method)

F

 	

 	force_caps (vncdotool.client.VNCDoToolFactory attribute)

K

 	

 	keyDown() (vncdotool.client.VNCDoToolClient method)

 	keyPress() (vncdotool.client.VNCDoToolClient method)

 	

 	keyUp() (vncdotool.client.VNCDoToolClient method)

M

 	

 	mouseDown() (vncdotool.client.VNCDoToolClient method)

 	mouseDrag() (vncdotool.client.VNCDoToolClient method)

 	mouseMove() (vncdotool.client.VNCDoToolClient method)

 	

 	mousePress() (vncdotool.client.VNCDoToolClient method)

 	mouseUp() (vncdotool.client.VNCDoToolClient method)

N

 	

 	nocursor (vncdotool.client.VNCDoToolFactory attribute)

P

 	

 	password (vncdotool.client.VNCDoToolFactory attribute)

 	paste() (vncdotool.client.VNCDoToolClient method)

 	pause() (vncdotool.client.VNCDoToolClient method)

 	

 	protocol (vncdotool.client.VNCDoToolFactory attribute)

 	pseudocursor (vncdotool.client.VNCDoToolFactory attribute)

S

 	

 	screen (vncdotool.client.VNCDoToolClient attribute)

 	shared (vncdotool.client.VNCDoToolFactory attribute)

 	

 	SPECIAL_KEYS_US (vncdotool.client.VNCDoToolClient attribute)

U

 	

 	updateCursor() (vncdotool.client.VNCDoToolClient method)

 	

 	updateRectangle() (vncdotool.client.VNCDoToolClient method)

V

 	

 	vncConnectionMade() (vncdotool.client.VNCDoToolClient method)

 	vncdotool.client (module)

 	VNCDoToolClient (class in vncdotool.client)

 	

 	VNCDoToolFactory (class in vncdotool.client)

 	vncRequestPassword() (vncdotool.client.VNCDoToolClient method)

X

 	

 	x (vncdotool.client.VNCDoToolClient attribute)

Y

 	

 	y (vncdotool.client.VNCDoToolClient attribute)

 Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

rfbproto.html

 Navigation

 		
 index

 		
 modules |

 		VNCDoTool 0.9.0.dev0 documentation »

1 The RFB Protocol

This document is based on “The RFB Protocol” by Tristan Richardson of
RealVNC Ltd (formerly of Olivetti Research Ltd / AT&T Labs Cambridge).

Contents

		1 The RFB Protocol
		1.1 Introduction

		1.2 Display Protocol
		1.2.1 Screen Model

		1.3 Input Protocol

		1.4 Representation of Pixel Data

		1.5 Protocol Extensions

		1.6 String Encodings

		1.7 Protocol Messages
		1.7.1 Handshaking Messages
		1.7.1.1 ProtocolVersion

		1.7.1.2 Security

		1.7.1.3 SecurityResult

		1.7.2 Security Types
		1.7.2.1 None

		1.7.2.2 VNC Authentication

		1.7.2.3 Tight Security Type

		1.7.3 Initialisation Messages
		1.7.3.1 ClientInit

		1.7.3.2 ServerInit

		1.7.4 Client to Server Messages
		1.7.4.1 SetPixelFormat

		1.7.4.2 SetEncodings

		1.7.4.3 FramebufferUpdateRequest

		1.7.4.4 KeyEvent

		1.7.4.5 PointerEvent

		1.7.4.6 ClientCutText

		1.7.4.7 EnableContinuousUpdates

		1.7.4.8 ClientFence

		1.7.4.9 xvp Client Message

		1.7.4.10 SetDesktopSize

		1.7.4.11 gii Client Message
		1.7.4.11.1 Version

		1.7.4.11.2 Device Creation

		1.7.4.11.3 Device Destruction

		1.7.4.11.4 Injecting Events

		1.7.4.12 QEMU Client Message
		1.7.4.12.1 QEMU Extended Key Event Message

		1.7.4.12.2 QEMU Audio Client Message

		1.7.5 Server to Client Messages
		1.7.5.1 FramebufferUpdate

		1.7.5.2 SetColourMapEntries

		1.7.5.3 Bell

		1.7.5.4 ServerCutText

		1.7.5.5 EndOfContinuousUpdates

		1.7.5.6 ServerFence

		1.7.5.7 xvp Server Message

		1.7.5.8 gii Server Message
		1.7.5.8.1 Version

		1.7.5.8.2 Device Creation Response

		1.7.5.9 QEMU Server Message
		1.7.5.9.1 QEMU Audio Server Message

		1.7.6 Encodings
		1.7.6.1 Raw Encoding

		1.7.6.2 CopyRect Encoding

		1.7.6.3 RRE Encoding

		1.7.6.4 CoRRE Encoding

		1.7.6.5 Hextile Encoding

		1.7.6.6 zlib Encoding

		1.7.6.7 Tight Encoding

		1.7.6.8 zlibhex Encoding

		1.7.6.9 ZRLE Encoding

		1.7.7 Pseudo-encodings
		1.7.7.1 JPEG Quality Level Pseudo-encoding

		1.7.7.2 Cursor Pseudo-encoding

		1.7.7.3 X Cursor Pseudo-encoding

		1.7.7.4 DesktopSize Pseudo-encoding
		1.7.7.4.1 Server Semantics

		1.7.7.4.2 Client Semantics

		1.7.7.5 LastRect Pseudo-encoding

		1.7.7.6 Compression Level Pseudo-encoding

		1.7.7.7 QEMU Pointer Motion Change Psuedo-encoding

		1.7.7.8 QEMU Extended Key Event Psuedo-encoding

		1.7.7.9 QEMU Audio Psuedo-encoding

		1.7.7.10 gii Pseudo-encoding

		1.7.7.11 DesktopName Pseudo-encoding

		1.7.7.12 ExtendedDesktopSize Pseudo-encoding

		1.7.7.13 xvp Pseudo-encoding

		1.7.7.14 Fence Pseudo-encoding

		1.7.7.15 ContinuousUpdates Pseudo-encoding

		1.7.7.16 JPEG Fine-Grained Quality Level Pseudo-encoding

		1.7.7.17 JPEG Subsampling Level Pseudo-Encoding

1.1 Introduction

RFB (“remote framebuffer”) is a simple protocol for remote access to
graphical user interfaces. Because it works at the framebuffer level it
is applicable to all windowing systems and applications, including X11,
Windows and Macintosh. RFB is the protocol used in VNC (Virtual Network
Computing).

The remote endpoint where the user sits (i.e. the display plus keyboard
and/or pointer) is called the RFB client or viewer. The endpoint where
changes to the framebuffer originate (i.e. the windowing system and
applications) is known as the RFB server.

RFB is truly a “thin client” protocol. The emphasis in the design of
the RFB protocol is to make very few requirements of the client. In
this way, clients can run on the widest range of hardware, and the task
of implementing a client is made as simple as possible.

The protocol also makes the client stateless. If a client disconnects
from a given server and subsequently reconnects to that same server,
the state of the user interface is preserved. Furthermore, a different
client endpoint can be used to connect to the same RFB server. At the
new endpoint, the user will see exactly the same graphical user
interface as at the original endpoint. In effect, the interface to the
user’s applications becomes completely mobile. Wherever suitable
network connectivity exists, the user can access their own personal
applications, and the state of these applications is preserved between
accesses from different locations. This provides the user with a
familiar, uniform view of the computing infrastructure wherever they
go.

1.2 Display Protocol

The display side of the protocol is based around a single graphics
primitive: “put a rectangle of pixel data at a given x,y position”. At
first glance this might seem an inefficient way of drawing many user
interface components. However, allowing various different encodings for
the pixel data gives us a large degree of flexibility in how to trade
off various parameters such as network bandwidth, client drawing speed
and server processing speed.

A sequence of these rectangles makes a framebuffer update (or simply
update). An update represents a change from one valid framebuffer
state to another, so in some ways is similar to a frame of video. The
rectangles in an update are usually disjoint but this is not
necessarily the case.

The update protocol is demand-driven by the client. That is, an update
is only sent from the server to the client in response to an explicit
request from the client. This gives the protocol an adaptive quality.
The slower the client and the network are, the lower the rate of
updates becomes. With typical applications, changes to the same area of
the framebuffer tend to happen soon after one another. With a slow
client and/or network, transient states of the framebuffer can be
ignored, resulting in less network traffic and less drawing for the
client.

1.2.1 Screen Model

In its simplest form, the RFB protocol uses a single, rectangular
framebuffer. All updates are contained within this buffer and may not
extend outside of it. A client with basic functionality simply presents
this buffer to the user, padding or cropping it as necessary to fit
the user’s display.

More advanced RFB clients and servers have the ability to extend this
model and add multiple screens. The purpose being to create a
server-side representation of the client’s physical layout.
Applications can use this information to properly position themselves
with regard to screen borders.

In the multiple-screen model, there is still just a single framebuffer
and framebuffer updates are unaffected by the screen layout. This
assures compatibility between basic clients and advanced servers.
Screens are added to this model and act like viewports into the
framebuffer. A basic client acts as if there is a single screen
covering the entire framebuffer.

The server may support up to 255 screens, which must be contained fully
within the current framebuffer. Multiple screens may overlap partially
or completely.

The client must keep track of the contents of the entire framebuffer,
not just the areas currently covered by a screen. Similarly, the server
is free to use encodings that rely on contents currently not visible
inside any screen. For example it may issue a CopyRect rectangle from
any part of the framebuffer that should already be known to the client.

The client can request changes to the framebuffer size and screen
layout. The server is free to approve or deny these requests at will,
but must always inform the client of the result. See the
SetDesktopSize message for details.

If the framebuffer size changes, for whatever reason, then all data in
it is invalidated and considered undefined. The server must not use
any encoding that relies on the previous framebuffer contents. Note
however that the semantics for DesktopSize are not well-defined and
do not follow this behaviour in all server implementations. See the
DesktopSize Pseudo-encoding chapter for full details.

Changing only the screen layout does not affect the framebuffer
contents. The client must therefore keep track of the current
framebuffer dimensions and compare it with the one received in the
ExtendedDesktopSize rectangle. Only when they differ may it discard
the framebuffer contents.

1.3 Input Protocol

The input side of the protocol is based on a standard workstation model
of a keyboard and multi-button pointing device. Input events are simply
sent to the server by the client whenever the user presses a key or
pointer button, or whenever the pointing device is moved. These input
events can also be synthesised from other non-standard I/O devices. For
example, a pen-based handwriting recognition engine might generate
keyboard events.

If you have an input source that does not fit this standard workstation
model, the General Input Interface (gii) protocol extension provides
possibilities for input sources with more axes, relative movement and
more buttons.

1.4 Representation of Pixel Data

Initial interaction between the RFB client and server involves a
negotiation of the format and encoding with which pixel data will
be sent. This negotiation has been designed to make the job of the
client as easy as possible. The bottom line is that the server must
always be able to supply pixel data in the form the client wants.
However if the client is able to cope equally with several different
formats or encodings, it may choose one which is easier for the server
to produce.

Pixel format refers to the representation of individual colours by
pixel values. The most common pixel formats are 24-bit or 16-bit “true
colour”, where bit-fields within the pixel value translate directly to
red, green and blue intensities, and 8-bit “colour map” where an
arbitrary mapping can be used to translate from pixel values to the RGB
intensities.

Encoding refers to how a rectangle of pixel data will be sent on the
wire. Every rectangle of pixel data is prefixed by a header giving the
X,Y position of the rectangle on the screen, the width and height of
the rectangle, and an encoding type which specifies the encoding of
the pixel data. The data itself then follows using the specified
encoding.

1.5 Protocol Extensions

There are a number of ways in which the protocol can be extended:

		New encodings

		A new encoding type can be added to the protocol relatively easily
whilst maintaining compatibility with existing clients and servers.
Existing servers will simply ignore requests for a new encoding
which they don’t support. Existing clients will never request the
new encoding so will never see rectangles encoded that way.

		Pseudo encodings

		In addition to genuine encodings, a client can request a “pseudo-
encoding” to declare to the server that it supports a certain
extension to the protocol. A server which does not support the
extension will simply ignore the pseudo-encoding. Note that this
means the client must assume that the server does not support the
extension until it gets some extension-specific confirmation from
the server. See Pseudo-encodings for a description of current
pseudo-encodings.

		New security types

		Adding a new security type gives the ultimate flexibility in
modifying the behaviour of the protocol without sacrificing
compatibility with existing clients and servers. A client and
server which agree on a new security type can effectively talk
whatever protocol they like after that, it doesn’t necessarily have
to be anything like the RFB protocol.

Under no circumstances should you use a different protocol version
number. If you use a different protocol version number then you are
not RFB / VNC compatible.

All three mechanisms for extensions are handled by RealVNC Ltd. To
ensure that you stay compatible with the RFB protocol it is important
that you contact RealVNC Ltd to make sure that your encoding types and
security types do not clash. Please see the RealVNC website at
http://www.realvnc.com for details of how to contact them.

1.6 String Encodings

The encoding used for strings in the protocol has historically often
been unspecified, or has changed between versions of the protocol. As a
result, there are a lot of implementations which use different,
incompatible encodings. Commonly those encodings have been ISO 8859-1
(also known as Latin-1) or Windows code pages.

It is strongly recommended that new implementations use the UTF-8
encoding for these strings. This allows full unicode support, yet
retains good compatibility with older RFB implementations.

New protocol additions that do not have a legacy problem should mandate
the UTF-8 encoding to provide full character support and to avoid any
issues with ambiguity.

All clients and servers should be prepared to receive invalid UTF-8
sequences at all times. These can occur as a result of historical
ambiguity or because of bugs. Neither case should result in lost
protocol synchronization.

Handling an invalid UTF-8 sequence is largely dependent on the role
that string plays. Modifying the string should only be done when the
string is only used in the user interface. It should be obvious in that
case that the string has been modified, e.g. by appending a notice to
the string.

1.7 Protocol Messages

The RFB protocol can operate over any reliable transport, either byte-
stream or message-based. Conventionally it is used over a TCP/IP
connection. There are three stages to the protocol. First is the
handshaking phase, the purpose of which is to agree upon the protocol
version and the type of security to be used. The second stage is an
initialisation phase where the client and server exchange ClientInit
and ServerInit messages. The final stage is the normal protocol
interaction. The client can send whichever messages it wants, and may
receive messages from the server as a result. All these messages begin
with a message-type byte, followed by any message-specific data.

The following descriptions of protocol messages use the basic types
U8, U16, U32, S8, S16, S32. These represent
respectively 8, 16 and 32-bit unsigned integers and 8, 16 and 32-bit
signed integers. All multiple byte integers (other than pixel values
themselves) are in big endian order (most significant byte first).

However, some protocol extensions use protocol messages that have types
that may be in little endian order. These endian agnostic types are
EU16, EU32, ES16, ES32, with some extension specific
indicator of the endianess.

The type PIXEL is taken to mean a pixel value of bytesPerPixel
bytes, where 8 * bytesPerPixel is the number of bits-per-pixel as
agreed by the client and server, either in the ServerInit message
(ServerInit) or a SetPixelFormat message (SetPixelFormat).

1.7.1 Handshaking Messages

1.7.1.1 ProtocolVersion

Handshaking begins by the server sending the client a ProtocolVersion
message. This lets the client know which is the highest RFB protocol
version number supported by the server. The client then replies with a
similar message giving the version number of the protocol which should
actually be used (which may be different to that quoted by the server).
A client should never request a protocol version higher than that
offered by the server. It is intended that both clients and servers may
provide some level of backwards compatibility by this mechanism.

The only published protocol versions at this time are 3.3, 3.7, 3.8
(version 3.5 was wrongly reported by some clients, but this should be
interpreted by all servers as 3.3). Addition of a new encoding or
pseudo-encoding type does not require a change in protocol version,
since a server can simply ignore encodings it does not understand.

The ProtocolVersion message consists of 12 bytes interpreted as a
string of ASCII characters in the format “RFB xxx.yyy\n” where
xxx and yyy are the major and minor version numbers, padded
with zeros.

		No. of bytes
		Value

		12
		“RFB 003.003\n”
(hex 52 46 42 20 30 30 33 2e 30 30 33 0a)

or

		No. of bytes
		Value

		12
		“RFB 003.007\n”
(hex 52 46 42 20 30 30 33 2e 30 30 37 0a)

or

		No. of bytes
		Value

		12
		“RFB 003.008\n”
(hex 52 46 42 20 30 30 33 2e 30 30 38 0a)

1.7.1.2 Security

Once the protocol version has been decided, the server and client must
agree on the type of security to be used on the connection.

		Version 3.7 onwards

		The server lists the security types which it supports:

		No. of bytes
		Type
		Description

		1
		U8
		number-of-security-types

		number-of-security-types
		U8 array
		security-types

If the server listed at least one valid security type supported by
the client, the client sends back a single byte indicating which
security type is to be used on the connection:

		No. of bytes
		Type
		Description

		1
		U8
		security-type

If number-of-security-types is zero, then for some reason the
connection failed (e.g. the server cannot support the desired
protocol version). This is followed by a string describing the
reason (where a string is specified as a length followed by that
many ASCII characters):

		No. of bytes
		Type
		Description

		4
		U32
		reason-length

		reason-length
		U8 array
		reason-string

The server closes the connection after sending the reason-string.

		Version 3.3

		The server decides the security type and sends a single word:

		No. of bytes
		Type
		Description

		4
		U32
		security-type

The security-type may only take the value 0, 1 or 2. A value of 0
means that the connection has failed and is followed by a string
giving the reason, as described above.

The security types defined in this document are:

		Number
		Name

		0
		Invalid

		1
		None

		2
		VNC Authentication

		16
		Tight Security Type

Other registered security types are:

		Number
		Name

		3-4
		RealVNC

		5
		RA2

		6
		RA2ne

		7-15
		RealVNC

		17
		Ultra

		18
		TLS

		19
		VeNCrypt

		20
		SASL

		21
		MD5 hash authentication

		22
		xvp

		30-35
		Apple Inc.

		128-255
		RealVNC

The official, up-to-date list is maintained by IANA [1].

		[1]		(1, 2, 3, 4) http://www.iana.org/assignments/rfb/rfb.xml

Once the security-type has been decided, data specific to that
security-type follows (see Security Types for details). At the end
of the security handshaking phase, the protocol normally continues with
the SecurityResult message.

Note that after the security handshaking phase, it is possible that
further protocol data is over an encrypted or otherwise altered
channel.

1.7.1.3 SecurityResult

The server sends a word to inform the client whether the security
handshaking was successful.

		No. of bytes
		Type
		[Value]
		Description

		4
		U32
		
		status:

		
		
		0
		OK

		
		
		1
		failed

		
		
		2
		failed, too many attempts [2]

		[2]		Only valid if the Tight Security Type is enabled.

If successful, the protocol passes to the initialisation phase
(Initialisation Messages).

		Version 3.8 onwards

		If unsuccessful, the server sends a string describing the reason
for the failure, and then closes the connection:

		No. of bytes
		Type
		Description

		4
		U32
		reason-length

		reason-length
		U8 array
		reason-string

		Version 3.3 and 3.7

		If unsuccessful, the server closes the connection.

1.7.2 Security Types

1.7.2.1 None

No authentication is needed and protocol data is to be sent
unencrypted.

		Version 3.8 onwards

		The protocol continues with the SecurityResult message.

		Version 3.3 and 3.7

		The protocol passes to the initialisation phase
(Initialisation Messages).

1.7.2.2 VNC Authentication

VNC authentication is to be used and protocol data is to be sent
unencrypted. The server sends a random 16-byte challenge:

		No. of bytes
		Type
		Description

		16
		U8
		challenge

The client encrypts the challenge with DES, using a password supplied
by the user as the key, and sends the resulting 16-byte response:

		No. of bytes
		Type
		Description

		16
		U8
		response

The protocol continues with the SecurityResult message.

1.7.2.3 Tight Security Type

The Tight security type is a generic protocol extension that allows for
three things:

		Tunneling of data

		A tunnel can be e.g. encryption, or indeed a no-op tunnel.

		Authentication

		The Tight security type allows for flexible authentication of the
client, which is typically one of the other security types.

		Server capabilities

		As a last step the Tight security type extends the ServerInit
message and enables the server to let the client know about the
server capabilities in terms of encodings and supported message
types.

The Tight security type is under the control of the TightVNC project,
and any new numbers must be registered with that project before they
can be added to any of the lists of Tight capabilities. It is strongly
recommended that any messages and security types registered with
RealVNC are also registered with the TightVNC project (register
security types as Tight authentication capabilities) in order to
eliminate clashes as much as is possible. Same thing with new
encodings, but in that case the problem is not as severe as the
TightVNC project are not using any encodings that are not registered
with RealVNC. Please see the TightVNC website at
http://www.tightvnc.com/ for details on how to contact the project.

After the Tight security type has been selected, the server starts by
sending a list of supported tunnels, in order of preference:

		No. of bytes
		Type
		Description

		4
		U32
		number-of-tunnels

followed by number-of-tunnels repetitions of the following:

		No. of bytes
		Type
		Description

		16
		CAPABILITY
		tunnel

where CAPABILITY is

		No. of bytes
		Type
		Description

		4
		S32
		code

		4
		U8 array
		vendor

		8
		U8 array
		signature

Note that the code is not the only thing identifying a capability.
The client must ensure that all members of the structure match before
using the capability. Also note that code is U32 in the original
Tight documentation and implementation, but since code is used to
hold encoding numbers we have selected S32 in this document.

The following tunnel capabilities are registered:

		Code
		Vendor
		Signature
		Description

		0
		“TGHT“
		“NOTUNNEL“
		No tunneling

If number-of-tunnels is non-zero, the client has to request a tunnel
from the list with a tunneling method request:

		No. of bytes
		Type
		Description

		4
		S32
		code

If number-of-tunnels is zero, the client must make no such request,
instead the server carries on with sending the list of supported
authentication types, in order of preference:

		No. of bytes
		Type
		Description

		4
		U32
		number-of-auth-types

followed by number-of-auth-types repetitions of the following:

		No. of bytes
		Type
		Description

		16
		CAPABILITY
		auth-type

The following authentication capabilities are registered:

		Code
		Vendor
		Signature
		Description

		1
		“STDV“
		“NOAUTH__“
		None

		2
		“STDV“
		“VNCAUTH_“
		VNC Authentication

		19
		“VENC“
		“VENCRYPT“
		VeNCrypt Security

		20
		“GTKV“
		“SASL____“
		Simple Authentication and Security
Layer (SASL)

		129
		“TGHT“
		“ULGNAUTH“
		Unix Login Authentication

		130
		“TGHT“
		“XTRNAUTH“
		External Authentication

If number-of-auth-types is non-zero, the client has to request an
authentication type from the list with an authentication scheme
request:

		No. of bytes
		Type
		Description

		4
		S32
		code

For code 1, the protocol the proceeds at security type None and
for code 2 it proceeds at security type VNC Authentication.

If number-of-auth-types is zero, the protocol the proceeds directly
at security type None.

Note that the ServerInit message is extended when the Tight security
type has been activated.

1.7.3 Initialisation Messages

Once the client and server are sure that they’re happy to talk to one
another using the agreed security type, the protocol passes to the
initialisation phase. The client sends a ClientInit message followed
by the server sending a ServerInit message.

1.7.3.1 ClientInit

		No. of bytes
		Type
		Description

		1
		U8
		shared-flag

Shared-flag is non-zero (true) if the server should try to share the
desktop by leaving other clients connected, zero (false) if it should
give exclusive access to this client by disconnecting all other
clients.

1.7.3.2 ServerInit

After receiving the ClientInit message, the server sends a
ServerInit message. This tells the client the width and height of the
server’s framebuffer, its pixel format and the name associated with the
desktop:

		No. of bytes
		Type
		Description

		2
		U16
		framebuffer-width

		2
		U16
		framebuffer-height

		16
		PIXEL_FORMAT
		server-pixel-format

		4
		U32
		name-length

		name-length
		U8 array
		name-string

The text encoding used for name-string is historically undefined but
it is strongly recommended to use UTF-8 (see String Encodings for
more details).

PIXEL_FORMAT is defined as:

		No. of bytes
		Type
		Description

		1
		U8
		bits-per-pixel

		1
		U8
		depth

		1
		U8
		big-endian-flag

		1
		U8
		true-colour-flag

		2
		U16
		red-max

		2
		U16
		green-max

		2
		U16
		blue-max

		1
		U8
		red-shift

		1
		U8
		green-shift

		1
		U8
		blue-shift

		3
		
		padding

Server-pixel-format specifies the server’s natural pixel format. This
pixel format will be used unless the client requests a different format
using the SetPixelFormat message (SetPixelFormat).

Bits-per-pixel is the number of bits used for each pixel value on the
wire. This must be greater than or equal to the depth which is the
number of useful bits in the pixel value. Currently bits-per-pixel
must be 8, 16 or 32. Less than 8-bit pixels are not yet supported.
Big-endian-flag is non-zero (true) if multi-byte pixels are
interpreted as big endian. Of course this is meaningless for 8
bits-per-pixel.

If true-colour-flag is non-zero (true) then the last six items
specify how to extract the red, green and blue intensities from the
pixel value. Red-max is the maximum red value (= 2^n - 1 where n is
the number of bits used for red). Note this value is always in big
endian order. Red-shift is the number of shifts needed to get the red
value in a pixel to the least significant bit. Green-max,
green-shift and blue-max, blue-shift are similar for green and
blue. For example, to find the red value (between 0 and red-max) from
a given pixel, do the following:

		Swap the pixel value according to big-endian-flag (e.g. if
big-endian-flag is zero (false) and host byte order is big endian,
then swap).

		Shift right by red-shift.

		AND with red-max (in host byte order).

If true-colour-flag is zero (false) then the server uses pixel values
which are not directly composed from the red, green and blue
intensities, but which serve as indices into a colour map. Entries in
the colour map are set by the server using the SetColourMapEntries
message (SetColourMapEntries).

If the Tight Security Type is activated, the server init message is
extended with an interaction capabilities section:

		No. of bytes
		Type
		[Value]
		Description

		2
		U16
		
		number-of-server-messages

		2
		U16
		
		number-of-client-messages

		2
		U16
		
		number-of-encodings

		2
		U16
		0
		padding

followed by number-of-server-messages repetitions of the following:

		No. of bytes
		Type
		Description

		16
		CAPABILITY
		server-message

followed by number-of-client-messages repetitions of the following:

		No. of bytes
		Type
		Description

		16
		CAPABILITY
		client-message

followed by number-of-encodings repetitions of the following:

		No. of bytes
		Type
		Description

		16
		CAPABILITY
		encoding

The following server-message capabilities are registered:

		Code
		Vendor
		Signature
		Description

		130
		“TGHT“
		“FTS_LSDT“
		File List Data

		131
		“TGHT“
		“FTS_DNDT“
		File Download Data

		132
		“TGHT“
		“FTS_UPCN“
		File Upload Cancel

		133
		“TGHT“
		“FTS_DNFL“
		File Download Failed

		150
		“TGHT“
		“CUS_EOCU“
		End Of Continuous Updates

		253
		“GGI_“
		“GII_SERV“
		gii Server Message

The following client-message capabilities are registered:

		Code
		Vendor
		Signature
		Description

		130
		“TGHT“
		“FTC_LSRQ“
		File List Request

		131
		“TGHT“
		“FTC_DNRQ“
		File Download Request

		132
		“TGHT“
		“FTC_UPRQ“
		File Upload Request

		133
		“TGHT“
		“FTC_UPDT“
		File Upload Data

		134
		“TGHT“
		“FTC_DNCN“
		File Download Cancel

		135
		“TGHT“
		“FTC_UPFL“
		File Upload Failed

		136
		“TGHT“
		“FTC_FCDR“
		File Create Directory Request

		150
		“TGHT“
		“CUC_ENCU“
		Enable/Disable Continuous Updates

		151
		“TGHT“
		“VRECTSEL“
		Video Rectangle Selection

		253
		“GGI_“
		“GII_CLNT“
		gii Client Message

The following encoding capabilities are registered:

		Code
		Vendor
		Signature
		Description

		0
		“STDV“
		“RAW_____“
		Raw Encoding

		1
		“STDV“
		“COPYRECT“
		CopyRect Encoding

		2
		“STDV“
		“RRE_____“
		RRE Encoding

		4
		“STDV“
		“CORRE___“
		CoRRE Encoding

		5
		“STDV“
		“HEXTILE_“
		Hextile Encoding

		6
		“TRDV“
		“ZLIB____“
		ZLib Encoding

		7
		“TGHT“
		“TIGHT___“
		Tight Encoding

		8
		“TRDV“
		“ZLIBHEX_“
		ZLibHex Encoding

		-32
		“TGHT“
		“JPEGQLVL“
		JPEG Quality Level
Pseudo-encoding

		-223
		“TGHT“
		“NEWFBSIZ“
		DesktopSize Pseudo-encoding (New
FB Size)

		-224
		“TGHT“
		“LASTRECT“
		LastRect Pseudo-encoding

		-232
		“TGHT“
		“POINTPOS“
		Pointer Position

		-239
		“TGHT“
		“RCHCURSR“
		Cursor Pseudo-encoding (Rich
Cursor)

		-240
		“TGHT“
		“X11CURSR“
		X Cursor Pseudo-encoding

		-256
		“TGHT“
		“COMPRLVL“
		Compression Level
Pseudo-encoding

		-305
		“GGI_“
		“GII_____“
		gii Pseudo-encoding

		-512
		“TRBO“
		“FINEQLVL“
		JPEG Fine-Grained Quality Level
Pseudo-encoding

		-768
		“TRBO“
		“SSAMPLVL“
		JPEG Subsampling Level
Pseudo-encoding

Note that the server need not (but it may) list the “RAW_____”
capability since it must be supported anyway.

1.7.4 Client to Server Messages

The client to server message types that all servers must support are:

		Number
		Name

		0
		SetPixelFormat

		2
		SetEncodings

		3
		FramebufferUpdateRequest

		4
		KeyEvent

		5
		PointerEvent

		6
		ClientCutText

Optional message types are:

		Number
		Name

		7
		FileTransfer

		8
		SetScale

		9
		SetServerInput

		10
		SetSW

		11
		TextChat

		12
		KeyFrameRequest

		13
		KeepAlive

		14
		Possibly used in UltraVNC

		15
		SetScaleFactor

		16-19
		Possibly used in UltraVNC

		20
		RequestSession

		21
		SetSession

		80
		NotifyPluginStreaming

		127
		VMWare

		128
		Car Connectivity

		150
		EnableContinuousUpdates

		248
		ClientFence

		249
		OLIVE Call Control

		250
		xvp Client Message

		251
		SetDesktopSize

		252
		tight

		253
		gii Client Message

		254
		VMWare

		255
		QEMU Client Message

The official, up-to-date list is maintained by IANA [1].

Note that before sending a message with an optional message type a
client must have determined that the server supports the relevant
extension by receiving some extension-specific confirmation from the
server.

1.7.4.1 SetPixelFormat

Sets the format in which pixel values should be sent in
FramebufferUpdate messages. If the client does not send a
SetPixelFormat message then the server sends pixel values in its
natural format as specified in the ServerInit message (ServerInit).

If true-colour-flag is zero (false) then this indicates that a
“colour map” is to be used. The server can set any of the entries in
the colour map using the SetColourMapEntries message
(SetColourMapEntries). Immediately after the client has sent this
message the colour map is empty, even if entries had previously been
set by the server.

Note that a client must not have an outstanding
FramebufferUpdateRequest when it sends SetPixelFormat as it would
be impossible to determine if the next FramebufferUpdate is using the
new or the previous pixel format.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		0
		message-type

		3
		
		
		padding

		16
		PIXEL_FORMAT
		
		pixel-format

where PIXEL_FORMAT is as described in ServerInit:

		No. of bytes
		Type
		Description

		1
		U8
		bits-per-pixel

		1
		U8
		depth

		1
		U8
		big-endian-flag

		1
		U8
		true-colour-flag

		2
		U16
		red-max

		2
		U16
		green-max

		2
		U16
		blue-max

		1
		U8
		red-shift

		1
		U8
		green-shift

		1
		U8
		blue-shift

		3
		
		padding

1.7.4.2 SetEncodings

Sets the encoding types in which pixel data can be sent by the server.
The order of the encoding types given in this message is a hint by the
client as to its preference (the first encoding specified being most
preferred). The server may or may not choose to make use of this hint.
Pixel data may always be sent in raw encoding even if not specified
explicitly here.

In addition to genuine encodings, a client can request
“pseudo-encodings” to declare to the server that it supports certain
extensions to the protocol. A server which does not support the
extension will simply ignore the pseudo-encoding. Note that this means
the client must assume that the server does not support the extension
until it gets some extension-specific confirmation from the server.

See Encodings for a description of each encoding and
Pseudo-encodings for the meaning of pseudo-encodings.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		2
		message-type

		1
		
		
		padding

		2
		U16
		
		number-of-encodings

followed by number-of-encodings repetitions of the following:

		No. of bytes
		Type
		Description

		4
		S32
		encoding-type

1.7.4.3 FramebufferUpdateRequest

Notifies the server that the client is interested in the area of the
framebuffer specified by x-position, y-position, width and
height. The server usually responds to a FramebufferUpdateRequest
by sending a FramebufferUpdate. Note however that a single
FramebufferUpdate may be sent in reply to several
FramebufferUpdateRequests.

The server assumes that the client keeps a copy of all parts of the
framebuffer in which it is interested. This means that normally the
server only needs to send incremental updates to the client.

However, if for some reason the client has lost the contents of a
particular area which it needs, then the client sends a
FramebufferUpdateRequest with incremental set to zero (false). This
requests that the server send the entire contents of the specified area
as soon as possible. The area will not be updated using the CopyRect
encoding.

If the client has not lost any contents of the area in which it is
interested, then it sends a FramebufferUpdateRequest with
incremental set to non-zero (true). If and when there are changes to
the specified area of the framebuffer, the server will send a
FramebufferUpdate. Note that there may be an indefinite period
between the FramebufferUpdateRequest and the FramebufferUpdate.

In the case of a fast client, the client may want to regulate the rate
at which it sends incremental FramebufferUpdateRequests to avoid
hogging the network.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		3
		message-type

		1
		U8
		
		incremental

		2
		U16
		
		x-position

		2
		U16
		
		y-position

		2
		U16
		
		width

		2
		U16
		
		height

A request for an area that partly falls outside the current framebuffer
must be cropped so that it fits within the framebuffer dimensions.

Note that an empty area can still solicit a FramebufferUpdate even
though that update will only contain pseudo-encodings.

1.7.4.4 KeyEvent

A key press or release. Down-flag is non-zero (true) if the key is
now pressed, zero (false) if it is now released. The key itself is
specified using the “keysym” values defined by the X Window System.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		4
		message-type

		1
		U8
		
		down-flag

		2
		
		
		padding

		4
		U32
		
		key

Auto repeating of keys when a key is held down should be handled on the
client. The rationale being that high latency on the network can make
it seem like a key is being held for a very long time, yet the problem
is that the KeyEvent message releasing the button has been delayed.

The client should send only repeated “down” KeyEvent messages, no
“up” messages, when a key is automatically repeated. This allows the
server to tell the difference between automatic repeat and actual
repeated entry by the user.

For most ordinary keys, the “keysym” is the same as the corresponding
ASCII value. For full details, see The Xlib Reference Manual, published
by O’Reilly & Associates, or see the header file <X11/keysymdef.h>
from any X Window System installation. Some other common keys are:

		Key name
		Keysym value

		BackSpace
		0xff08

		Tab
		0xff09

		Return or Enter
		0xff0d

		Escape
		0xff1b

		Insert
		0xff63

		Delete
		0xffff

		Home
		0xff50

		End
		0xff57

		Page Up
		0xff55

		Page Down
		0xff56

		Left
		0xff51

		Up
		0xff52

		Right
		0xff53

		Down
		0xff54

		F1
		0xffbe

		F2
		0xffbf

		F3
		0xffc0

		F4
		0xffc1

		...
		...

		F12
		0xffc9

		Shift (left)
		0xffe1

		Shift (right)
		0xffe2

		Control (left)
		0xffe3

		Control (right)
		0xffe4

		Meta (left)
		0xffe7

		Meta (right)
		0xffe8

		Alt (left)
		0xffe9

		Alt (right)
		0xffea

The interpretation of keysyms is a complex area. In order to be as
widely interoperable as possible the following guidelines should be
used:

		The “shift state” (i.e. whether either of the Shift keysyms are down)
should only be used as a hint when interpreting a keysym. For
example, on a US keyboard the ‘#’ character is shifted, but on a UK
keyboard it is not. A server with a US keyboard receiving a ‘#’
character from a client with a UK keyboard will not have been sent
any shift presses. In this case, it is likely that the server will
internally need to “fake” a shift press on its local system, in order
to get a ‘#’ character and not, for example, a ‘3’.

		The difference between upper and lower case keysyms is significant.
This is unlike some of the keyboard processing in the X Window System
which treats them as the same. For example, a server receiving an
uppercase ‘A’ keysym without any shift presses should interpret it as
an uppercase ‘A’. Again this may involve an internal “fake” shift
press.

		Servers should ignore “lock” keysyms such as CapsLock and NumLock
where possible. Instead they should interpret each character-based
keysym according to its case.

		Unlike Shift, the state of modifier keys such as Control and Alt
should be taken as modifying the interpretation of other keysyms.
Note that there are no keysyms for ASCII control characters such as
ctrl-a; these should be generated by viewers sending a Control press
followed by an ‘a’ press.

		On a viewer where modifiers like Control and Alt can also be used to
generate character-based keysyms, the viewer may need to send extra
“release” events in order that the keysym is interpreted correctly.
For example, on a German PC keyboard, ctrl-alt-q generates the ‘@’
character. In this case, the viewer needs to send “fake” release
events for Control and Alt in order that the ‘@’ character is
interpreted correctly (ctrl-alt-@ is likely to mean something
completely different to the server).

		There is no universal standard for “backward tab” in the X Window
System. On some systems shift+tab gives the keysym “ISO Left Tab”, on
others it gives a private “BackTab” keysym and on others it gives
“Tab” and applications tell from the shift state that it means
backward-tab rather than forward-tab. In the RFB protocol the latter
approach is preferred. Viewers should generate a shifted Tab rather
than ISO Left Tab. However, to be backwards-compatible with existing
viewers, servers should also recognise ISO Left Tab as meaning a
shifted Tab.

1.7.4.5 PointerEvent

Indicates either pointer movement or a pointer button press or release.
The pointer is now at (x-position, y-position), and the current
state of buttons 1 to 8 are represented by bits 0 to 7 of button-mask
respectively, 0 meaning up, 1 meaning down (pressed).

On a conventional mouse, buttons 1, 2 and 3 correspond to the left,
middle and right buttons on the mouse. On a wheel mouse, each step of
the wheel is represented by a press and release of a certain button.
Button 4 means up, button 5 means down, button 6 means left and
button 7 means right.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		5
		message-type

		1
		U8
		
		button-mask

		2
		U16
		
		x-position

		2
		U16
		
		y-position

The QEMU Pointer Motion Change Psuedo-encoding allows for the
negotiation of an alternative interpretation for the x-position
and y-position fields, as relative deltas.

1.7.4.6 ClientCutText

The client has new ISO 8859-1 (Latin-1) text in its cut buffer. Ends of
lines are represented by the linefeed / newline character (value 10)
alone. No carriage-return (value 13) is needed. There is currently no
way to transfer text outside the Latin-1 character set.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		6
		message-type

		3
		
		
		padding

		4
		U32
		
		length

		length
		U8 array
		
		text

1.7.4.7 EnableContinuousUpdates

This message informs the server to switch between only sending
FramebufferUpdate messages as a result of a
FramebufferUpdateRequest message, or sending FramebufferUpdate
messages continuously.

Note that there is currently no way to determine if the server supports
this message except for using the Tight Security Type authentication.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		150
		message-type

		1
		U8
		
		enable-flag

		2
		U16
		
		x-position

		2
		U16
		
		y-position

		2
		U16
		
		width

		2
		U16
		
		height

If enable-flag is non-zero, then the server can start sending
FramebufferUpdate messages as needed for the area specified by
x-position, y-position, width, and height. If continuous
updates are already active, then they must remain active active and the
coordinates must be replaced with the last message seen.

If enable-flag is zero, then the server must only send
FramebufferUpdate messages as a result of receiving
FramebufferUpdateRequest messages. The server must also immediately
send out a EndOfContinuousUpdates message. This message must be sent
out even if continuous updates were already disabled.

The server must ignore all incremental update requests
(FramebufferUpdateRequest with incremental set to non-zero) as
long as continuous updates are active. Non-incremental updates must
however be honored, even if the area in such a request does not overlap
the area specified for continuous updates.

1.7.4.8 ClientFence

A client supporting the Fence extension sends this to request a
synchronisation of the data stream.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		248
		message-type

		3
		
		
		padding

		4
		U32
		
		flags

		1
		U8
		
		length

		length
		U8 array
		
		payload

The flags byte informs the server if this is a new request, or a
response to a server request sent earlier, as well as what kind of
synchronisation that is desired. The server should not delay the
response more than necessary, even if the synchronisation requirements
would allow it.

		Bit
		Description

		0
		BlockBefore

		1
		BlockAfter

		2
		SyncNext

		3-30
		Currently unused

		31
		Request

The server should respond with a ServerFence with the Request
bit cleared, as well as clearing any bits it does not understand. The
remaining bits should remain set in the response. This allows the
client to determine which flags the server supports when new ones are
defined in the future.

		BlockBefore

		All messages preceeding this one must have finished processing and
taken effect before the response is sent.

		BlockAfter

		All messages following this one must not start processing until the
response is sent.

		SyncNext

		The message following this one must be executed in an atomic manner
so that anything preceeding the fence response must not be
affected by the message, and anything following the fence response
must be affected by the message. The primary purpose of this
synchronisation is to allow safe usage of stream altering commands
such as SetPixelFormat.

If BlockAfter is set then that synchronisation must be relaxed
to allow processing of the following message. Any message after
that will still be affected by both flags though.

		Request

		Indicates that this is a new request and that a response is
expected. If this bit is cleared then this message is a response to
an earlier request.

The client can also include a chunk of data to differentiate between
responses and to avoid keeping state. This data is specified using
length and payload. The size of this data is limited to 64 bytes in
order to minimise the disturbance to highly parallel clients and
servers.

1.7.4.9 xvp Client Message

A client supporting the xvp extension sends this to request that the
server initiate a clean shutdown, clean reboot or abrupt reset of the
system whose framebuffer the client is displaying.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		250
		message-type

		1
		
		
		padding

		1
		U8
		1
		xvp-extension-version

		1
		U8
		
		xvp-message-code

The possible values for xvp-message-code are: 2 - XVP_SHUTDOWN,
3 - XVP_REBOOT, and 4 - XVP_RESET. The client must have already
established that the server supports this extension, by requesting the
xvp Pseudo-encoding.

1.7.4.10 SetDesktopSize

Requests a change of desktop size. This message is an extension and
may only be sent if the client has previously received an
ExtendedDesktopSize rectangle.

The server must send an ExtendedDesktopSize rectangle for every
SetDesktopSize message received. Several rectangles may be
sent in a single FramebufferUpdate message, but the rectangles must
not be merged or reordered in any way. Note that rectangles sent for
other reasons may be interleaved with the ones generated as a result
of SetDesktopSize messages.

Upon a successful request the server must send an ExtendedDesktopSize
rectangle to the requesting client with the exact same information the
client provided in the corresponding SetDesktopSize message.
x-position must be set to 1, indicating a client initiated event, and
y-position must be set to 0, indicating success.

The server must also send an ExtendedDesktopSize rectangle to all
other connected clients, but with x-position set to 2, indicating a
change initiated by another client.

If the server can not or will not satisfy the request, it must send
an ExtendedDesktopSize rectangle to the requesting client with
x-position set to 1 and y-position set to the relevant error code.
All remaining fields are undefined, although the basic structure must
still be followed. The server must not send an ExtendedDesktopSize
rectangle to any other connected clients.

All ExtendedDesktopSize rectangles that are sent as a result of a
SetDesktopSize message should be sent as soon as possible.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		251
		message-type

		2
		
		
		padding

		2
		U16
		
		width

		2
		U16
		
		height

		1
		U8
		
		number-of-screens

		1
		
		
		padding

		number-of-screens * 16
		SCREEN array
		
		screens

The width and height indicates the framebuffer size requested. This
structure is followed by number-of-screens number of SCREEN
structures, which is defined in ExtendedDesktopSize Pseudo-encoding:

		No. of bytes
		Type
		Description

		4
		U32
		id

		2
		U16
		x-position

		2
		U16
		y-position

		2
		U16
		width

		2
		U16
		height

		4
		U32
		flags

The id field must be preserved upon modification as it determines the
difference between a moved screen and a newly created one. The client
should make every effort to preserve the fields it does not wish to
modify, including any unknown flags bits.

1.7.4.11 gii Client Message

This message is an extension and may only be sent if the client has
previously received a gii Server Message confirming that the server
supports the General Input Interface extension.

1.7.4.11.1 Version

The client response to a gii Version message from the server is the
following response:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		253
		message-type

		1
		U8
		1 or 129
		endian-and-sub-type

		2
		EU16
		4
		length

		2
		EU16
		1
		version

endian-and-sub-type is a bit-field with the leftmost bit indicating
big endian if set, and little endian if cleared. The rest of the bits
are the actual message sub type.

version is set by the client and ultimately decides the version of
gii protocol extension to use. It should be in the range given by the
server in the gii Version message. If the server doesn’t support any
version that the client supports, the client should instead stop using
the gii extension at this point.

1.7.4.11.2 Device Creation

After establishing the gii protocol extension version, the client
proceeds by requesting creation of one or more devices.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		253
		message-type

		1
		U8
		2 or 130
		endian-and-sub-type

		2
		EU16
		2
		length

		31
		U8 array
		
		device-name

		1
		U8
		0
		nul-terminator

		4
		EU32
		
		vendor-id

		4
		EU32
		
		product-id

		4
		EVENT_MASK
		
		can-generate

		4
		EU32
		
		num-registers

		4
		EU32
		
		num-valuators

		4
		EU32
		
		num-buttons

		num-valuators * 116
		VALUATOR
		
		

endian-and-sub-type is a bit-field with the leftmost bit indicating
big endian if set, and little endian if cleared. The rest of the bits
are the actual message sub type.

EVENT_MASK is a bit-field indicating which events the device
can generate.

		Value
		Bit name

		0x00000020
		Key press

		0x00000040
		Key release

		0x00000080
		Key repeat

		0x00000100
		Pointer relative

		0x00000200
		Pointer absolute

		0x00000400
		Pointer button press

		0x00000800
		Pointer button release

		0x00001000
		Valuator relative

		0x00002000
		Valuator absolute

and VALUATOR is

		No. of bytes
		Type
		[Value]
		Description

		4
		EU32
		
		index

		74
		U8 array
		
		long-name

		1
		U8
		0
		nul-terminator

		4
		U8 array
		
		short-name

		1
		U8
		0
		nul-terminator

		4
		ES32
		
		range-min

		4
		ES32
		
		range-center

		4
		ES32
		
		range-max

		4
		EU32
		
		SI-unit

		4
		ES32
		
		SI-add

		4
		ES32
		
		SI-mul

		4
		ES32
		
		SI-div

		4
		ES32
		
		SI-shift

The SI-unit field is defined as:

		Number
		SI-unit
		Description

		0
		
		unknown

		1
		s
		time

		2
		1/s
		frequency

		3
		m
		length

		4
		m/s
		velocity

		5
		m/s^2
		acceleration

		6
		rad
		angle

		7
		rad/s
		angular velocity

		8
		rad/s^2
		angular acceleration

		9
		m^2
		area

		10
		m^3
		volume

		11
		kg
		mass

		12
		N (kg*m/s^2)
		force

		13
		N/m^2 (Pa)
		pressure

		14
		Nm
		torque

		15
		Nm, VAs, J
		energy

		16
		Nm/s, VA, W
		power

		17
		K
		temperature

		18
		A
		current

		19
		V (kg*m^2/(As^3))
		voltage

		20
		V/A (Ohm)
		resistance

		21
		As/V
		capacity

		22
		Vs/A
		inductivity

The SI-add, SI-mul, SI-div and SI-shift fields of the
VALUATOR indicate how the raw value should be translated to the
SI-unit using the below formula.

float SI = (float) (SI_add + value[n]) * (float) SI_mul
/ (float) SI_div * pow(2.0, SI_shift);

Setting SI-mul to zero indicates that the valuator is non-linear or
that the factor is unknown.

1.7.4.11.3 Device Destruction

The client can destroy a device with a device destruct message.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		253
		message-type

		1
		U8
		3 or 131
		endian-and-sub-type

		2
		EU16
		4
		length

		4
		EU32
		
		device-origin

endian-and-sub-type is a bit-field with the leftmost bit indicating
big endian if set, and little endian if cleared. The rest of the bits
are the actual message sub type.

device-origin is the handle retrieved with a prior device creation
request.

1.7.4.11.4 Injecting Events

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		253
		message-type

		1
		U8
		0 or 128
		endian-and-sub-type

		2
		EU16
		
		length

followed by length bytes of EVENT entries

endian-and-sub-type is a bit-field with the leftmost bit indicating
big endian if set, and little endian if cleared. The rest of the bits
are the actual message sub type.

EVENT is one of KEY_EVENT, PTR_MOVE_EVENT,
PTR_BUTTON_EVENT and VALUATOR_EVENT.

KEY_EVENT is:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		24
		event-size

		1
		U8
		5, 6 or 7
		event-type

		2
		EU16
		
		padding

		4
		EU32
		
		device-origin

		4
		EU32
		
		modifiers

		4
		EU32
		
		symbol

		4
		EU32
		
		label

		4
		EU32
		
		button

The possible values for event-type are: 5 - key pressed, 6 - key
released and 7 - key repeat. XXX describe modifiers, symbol,
label and button. Meanwhile, see
http://www.ggi-project.org/documentation/libgii/current/gii_key_event.3.html
for details.

device-origin is the handle retrieved with a prior device creation
request.

PTR_MOVE_EVENT is:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		24
		event-size

		1
		U8
		8 or 9
		event-type

		2
		EU16
		
		padding

		4
		EU32
		
		device-origin

		4
		ES32
		
		x

		4
		ES32
		
		y

		4
		ES32
		
		z

		4
		ES32
		
		wheel

The possible values for event-type are: 8 - pointer relative and
9 - pointer absolute.

device-origin is the handle retrieved with a prior device creation
request.

PTR_BUTTON_EVENT is:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		12
		event-size

		1
		U8
		10 or 11
		event-type

		2
		EU16
		
		padding

		4
		EU32
		
		device-origin

		4
		EU32
		
		button-number

The possible values for event-type are: 10 - pointer button press and
11 - pointer button release.

device-origin is the handle retrieved with a prior device creation
request.

button-number 1 is the primary or left button, button-number 2 is
the secondary or right button and button-number 3 is the tertiary or
middle button. Other values for button-number are also valid.

VALUATOR_EVENT is:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		16 + 4 * count
		event-size

		1
		U8
		12 or 13
		event-type

		2
		EU16
		
		padding

		4
		EU32
		
		device-origin

		4
		EU32
		
		first

		4
		EU32
		
		count

		4 * count
		ES32 array
		
		value

The possible values for event-type are: 12 - relative valuator and
13 - absolute valuator.

device-origin is the handle retrieved with a prior device creation
request.

The event reports count valuators starting with first.

1.7.4.12 QEMU Client Message

This message may only be sent if the client has previously received
a FrameBufferUpdate that confirms support for the intended
submessage-type. Every QEMU Client Message begins with
a standard header

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		
		submessage-type

This header is then followed by arbitrary data whose format is
determined by the submessage-type. Possible values for
submessage-type and their associated psuedo encodings are

		Submessage Type
		Psuedo Encoding
		Description

		0
		-258
		Extended key events

		1
		-259
		Audio

1.7.4.12.1 QEMU Extended Key Event Message

This submessage allows the client to send an extended key event
containing a keycode, in addition to a keysym. The advantage of
providing the keycode is that it enables the server to interpret
the key event independantly of the clients’ locale specific
keymap. This can be important for virtual desktops whose key
input device requires scancodes, for example, virtual machines
emulating a PS/2 keycode. Prior to this extension, RFB servers
for such virtualization software would have to be configured
with a keymap matching the client. With this extension it is
sufficient for the guest operating system to be configured with
the matching keymap. The VNC server is keymap independant.

The full message is:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		0
		submessage-type

		2
		U16
		
		down-flag

		4
		U32
		
		keysym

		4
		U32
		
		keycode

The keysym and down-flag fields also take the same values as
described for the KeyEvent message. Auto repeating behaviour
of keys is also as described for the KeyEvent message.

The keycode is the XT keycode that produced the keysym. An
XT keycode is an XT make scancode sequence encoded to fit in
a single U32 quantity. Single byte XT scancodes with a byte
value less than 0x7f are encoded as is. 2-byte XT scancodes
whose first byte is 0xe0 and second byte is less than 0x7f are
encoded with the high bit of the first byte set. Some example
mappings are

		XT scancode
		X11 keysym
		RFB keycode
		down-flag

		0x1e
		XK_A (0x41)
		0x1e
		1

		0x9e
		XK_A (0x41)
		0x1e
		0

		0xe0 0x4d
		XK_Right (0xff53)
		0xcd
		1

		0xe0 0xcd
		XK_Right (0xff53)
		0xcd
		0

1.7.4.12.2 QEMU Audio Client Message

This submessage allows the client to control how the audio data
stream is received. There are three operations that can be invoked
with this submessage, the payload varies according to which
operation is requested.

The first operation enables audio capture from the server:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		1
		submessage-type

		2
		U16
		0
		operation

After invoking this operation, the client will receive a
QEMU Audio Server Message when an audio stream begins.

The second operation is the inverse, to disable audio capture
on the server:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		1
		submessage-type

		2
		U16
		1
		operation

Due to inherant race conditions in the protocol, after invoking this
operation, the client may still receive further
QEMU Audio Server Message messages for a short time.

The third and final operation is to set the audio sample format.
This should be set before audio capture is enabled on the server,
otherwise the client will not be able to reliably interpret the
receiving audio buffers:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		1
		submessage-type

		2
		U16
		2
		operation

		1
		U8
		
		sample-format

		1
		U8
		
		nchannels

		4
		U32
		
		frequency

The sample-format field must take one of the following values,
and this describes the number of bytes that each sample will
consume:

		Value
		No. of bytes
		Type

		0
		1
		U8

		1
		1
		S8

		2
		2
		U16

		3
		2
		S16

		4
		4
		U32

		5
		4
		S32

The nchannels field must be either 1 (mono) or 2 (stereo).

1.7.5 Server to Client Messages

The server to client message types that all clients must support are:

		Number
		Name

		0
		FramebufferUpdate

		1
		SetColourMapEntries

		2
		Bell

		3
		ServerCutText

Optional message types are:

		Number
		Name

		4
		ResizeFrameBuffer

		5
		KeyFrameUpdate

		6
		Possibly used in UltraVNC

		7
		FileTransfer

		8-10
		Possibly used in UltraVNC

		11
		TextChat

		12
		Possibly used in UltraVNC

		13
		KeepAlive

		14
		Possibly used in UltraVNC

		15
		ResizeFrameBuffer

		127
		VMWare

		128
		Car Connectivity

		150
		EndOfContinuousUpdates

		173
		ServerState

		248
		ServerFence

		249
		OLIVE Call Control

		250
		xvp Server Message

		252
		tight

		253
		gii Server Message

		254
		VMWare

		255
		QEMU Server Message

The official, up-to-date list is maintained by IANA [1].

Note that before sending a message with an optional message type a
server must have determined that the client supports the relevant
extension by receiving some extension-specific confirmation from the
client; usually a request for a given pseudo-encoding.

1.7.5.1 FramebufferUpdate

A framebuffer update consists of a sequence of rectangles of pixel data
which the client should put into its framebuffer. It is sent in
response to a FramebufferUpdateRequest from the client. Note that
there may be an indefinite period between the
FramebufferUpdateRequest and the FramebufferUpdate.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		0
		message-type

		1
		
		
		padding

		2
		U16
		
		number-of-rectangles

This is followed by number-of-rectangles rectangles of pixel data.
Each rectangle consists of:

		No. of bytes
		Type
		Description

		2
		U16
		x-position

		2
		U16
		y-position

		2
		U16
		width

		2
		U16
		height

		4
		S32
		encoding-type

followed by the pixel data in the specified encoding. See Encodings
for the format of the data for each encoding and Pseudo-encodings
for the meaning of pseudo-encodings.

Note that a framebuffer update marks a transition from one valid
framebuffer state to another. That means that a single update handles
all received FramebufferUpdateRequest up to the point where the
update is sent out.

However, because there is no strong connection between a
FramebufferUpdateRequest and a subsequent FramebufferUpdate, a
client that has more than one FramebufferUpdateRequest pending at any
given time cannot be sure that it has received all framebuffer updates.

See the LastRect Pseudo-encoding for an extension to this message.

1.7.5.2 SetColourMapEntries

When the pixel format uses a “colour map”, this message tells the
client that the specified pixel values should be mapped to the given
RGB intensities.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		1
		message-type

		1
		
		
		padding

		2
		U16
		
		first-colour

		2
		U16
		
		number-of-colours

followed by number-of-colours repetitions of the following:

		No. of bytes
		Type
		Description

		2
		U16
		red

		2
		U16
		green

		2
		U16
		blue

1.7.5.3 Bell

Ring a bell on the client if it has one.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		2
		message-type

1.7.5.4 ServerCutText

The server has new ISO 8859-1 (Latin-1) text in its cut buffer. Ends of
lines are represented by the linefeed / newline character (value 10)
alone. No carriage-return (value 13) is needed. There is currently no
way to transfer text outside the Latin-1 character set.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		3
		message-type

		3
		
		
		padding

		4
		U32
		
		length

		length
		U8 array
		
		text

1.7.5.5 EndOfContinuousUpdates

This message is sent whenever the server sees a
EnableContinuousUpdates message with enable set to a non-zero
value. It indicates that the server has stopped sending continuous
updates and is now only reacting to FramebufferUpdateRequest
messages.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		150
		message-type

1.7.5.6 ServerFence

A server supporting the Fence extension sends this to request a
synchronisation of the data stream.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		248
		message-type

		3
		
		
		padding

		4
		U32
		
		flags

		1
		U8
		
		length

		length
		U8 array
		
		payload

The format and semantics is identical to ClientFence, but with the
roles of the client and server reversed.

1.7.5.7 xvp Server Message

This has the following format:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		250
		message-type

		1
		
		
		padding

		1
		U8
		1
		xvp-extension-version

		1
		U8
		
		xvp-message-code

The possible values for xvp-message-code are: 0 - XVP_FAIL and 1 -
XVP_INIT.

A server which supports the xvp extension declares this by sending a
message with an XVP_INIT xvp-message-code when it receives a request
from the client to use the xvp Pseudo-encoding. The server must
specify in this message the highest xvp-extension-version it supports:
the client may assume that the server supports all versions from 1 up to
this value. The client is then free to use any supported version.
Currently, only version 1 is defined.

A server which subsequently receives an xvp Client Message requesting
an operation which it is unable to perform, informs the client of this
by sending a message with an XVP_FAIL xvp-message-code, and the same
xvp-extension-version as included in the client’s operation request.

1.7.5.8 gii Server Message

This message is an extension and may only be sent if the server has
previously received a SetEncodings message confirming that the
client supports the General Input Interface extension via the gii
Pseudo-encoding.

1.7.5.8.1 Version

The server response from a server with gii capabilities to a client
declaring gii capabilities is a gii version message:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		253
		message-type

		1
		SUB_TYPE
		1 or 129
		endian-and-sub-type

		2
		EU16
		4
		length

		2
		EU16
		1
		maximum-version

		2
		EU16
		1
		minimum-version

endian-and-sub-type is a bit-field with the leftmost bit indicating
big endian if set, and little endian if cleared. The rest of the bits
are the actual message sub type.

1.7.5.8.2 Device Creation Response

The server response to a gii Device Creation request from the client
is the following response:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		253
		message-type

		1
		SUB_TYPE
		2 or 130
		endian-and-sub-type

		2
		EU16
		4
		length

		4
		EU32
		
		device-origin

endian-and-sub-type is a bit-field with the leftmost bit indicating
big endian if set, and little endian if cleared. The rest of the bits
are the actual message sub type.

device-origin is used as a handle to the device in subsequent
communications. A device-origin of zero indicates device creation
failure.

1.7.5.9 QEMU Server Message

This message may only be sent if the client has previously received
a FrameBufferUpdate that confirms support for the intended
submessage-type. Every QEMU Server Message begins with
a standard header

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		
		submessage-type

This header is then followed by arbitrary data whose format is
determined by the submessage-type. Possible values for
submessage-type and their associated psuedo encodings are

		Submessage Type
		Psuedo Encoding
		Description

		1
		-259
		Audio

Submessage type 0 is unused, since the
QEMU Extended Key Event Psuedo-encoding does not require any
server messages.

1.7.5.9.1 QEMU Audio Server Message

This submessage allows the server to send an audio data stream
to the client. There are three operations that can be invoked
with this submessage, the payload varies according to which
operation is requested.

The first operation informs the client that an audio stream is
about to start

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		1
		submessage-type

		2
		U16
		1
		operation

The second operation informs the client that an audio stream has
now finished:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		1
		submessage-type

		2
		U16
		0
		operation

The third and final operation is to provide audio data.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		255
		message-type

		1
		U8
		1
		submessage-type

		2
		U16
		2
		operation

		4
		U32
		
		data-length

		data-length
		U8 array
		
		data

The data-length will be a multiple of (sample-format * nchannels)
as requested by the client in an earlier QEMU Audio Client Message.

1.7.6 Encodings

The encodings defined in this document are:

		Number
		Name

		0
		Raw Encoding

		1
		CopyRect Encoding

		2
		RRE Encoding

		4
		CoRRE Encoding

		5
		Hextile Encoding

		6
		zlib Encoding

		7
		Tight Encoding

		8
		zlibhex Encoding

		16
		ZRLE Encoding

		-23 to -32
		JPEG Quality Level Pseudo-encoding

		-223
		DesktopSize Pseudo-encoding

		-224
		LastRect Pseudo-encoding

		-239
		Cursor Pseudo-encoding

		-240
		X Cursor Pseudo-encoding

		-247 to -256
		Compression Level Pseudo-encoding

		-257
		QEMU Pointer Motion Change Psuedo-encoding

		-258
		QEMU Extended Key Event Psuedo-encoding

		-259
		QEMU Audio Psuedo-encoding

		-305
		gii Pseudo-encoding

		-307
		DesktopName Pseudo-encoding

		-308
		ExtendedDesktopSize Pseudo-encoding

		-309
		xvp Pseudo-encoding

		-312
		Fence Pseudo-encoding

		-313
		ContinuousUpdates Pseudo-encoding

		-412 to -512
		JPEG Fine-Grained Quality Level Pseudo-encoding

		-763 to -768
		JPEG Subsampling Level Pseudo-encoding

Other registered encodings are:

		Number
		Name

		9
		Ultra

		10
		Ultra2

		15
		TRLE

		17
		Hitachi ZYWRLE

		1000 to 1002
		Apple Inc.

		1011
		Apple Inc.

		1024 to 1099
		RealVNC

		1100 to 1105
		Apple Inc.

		-1 to -22
		Tight options

		-33 to -222
		Tight options

		-225
		PointerPos

		-226 to -238
		Tight options

		-241 to -246
		Tight options

		-260 to -272
		QEMU

		-273 to -304
		VMWare

		-306
		popa

		-310
		OLIVE Call Control

		-311
		ClientRedirect

		-523 to -528
		Car Connectivity

		0x574d5600 to 0x574d56ff
		VMWare

		0xc0a1e5ce
		ExtendedClipboard

		0xc0a1e5cf
		PluginStreaming

		0xffff0000
		Cache

		0xffff0001
		CacheEnable

		0xffff0002
		XOR zlib

		0xffff0003
		XORMonoRect zlib

		0xffff0004
		XORMultiColor zlib

		0xffff0005
		SolidColor

		0xffff0006
		XOREnable

		0xffff0007
		CacheZip

		0xffff0008
		SolMonoZip

		0xffff0009
		UltraZip

		0xffff8000
		ServerState

		0xffff8001
		EnableKeepAlive

		0xffff8002
		FTProtocolVersion

		0xffff8003
		Session

The official, up-to-date list is maintained by IANA [1].

1.7.6.1 Raw Encoding

The simplest encoding type is raw pixel data. In this case the data
consists of width * height pixel values (where width and height
are the width and height of the rectangle). The values simply represent
each pixel in left-to-right scanline order. All RFB clients must be
able to cope with pixel data in this raw encoding, and RFB servers
should only produce raw encoding unless the client specifically asks
for some other encoding type.

		No. of bytes
		Type
		Description

		width * height * bytesPerPixel
		PIXEL array
		pixels

1.7.6.2 CopyRect Encoding

The CopyRect (copy rectangle) encoding is a very simple and efficient
encoding which can be used when the client already has the same pixel
data elsewhere in its framebuffer. The encoding on the wire simply
consists of an X,Y coordinate. This gives a position in the framebuffer
from which the client can copy the rectangle of pixel data. This can be
used in a variety of situations, the most obvious of which are when the
user moves a window across the screen, and when the contents of a
window are scrolled. A less obvious use is for optimising drawing of
text or other repeating patterns. An intelligent server may be able to
send a pattern explicitly only once, and knowing the previous position
of the pattern in the framebuffer, send subsequent occurrences of the
same pattern using the CopyRect encoding.

		No. of bytes
		Type
		Description

		2
		U16
		src-x-position

		2
		U16
		src-y-position

1.7.6.3 RRE Encoding

RRE stands for rise-and-run-length encoding and as its name implies,
it is essentially a two-dimensional analogue of run-length encoding.
RRE-encoded rectangles arrive at the client in a form which can be
rendered immediately and efficiently by the simplest of graphics
engines. RRE is not appropriate for complex desktops, but can be useful
in some situations.

The basic idea behind RRE is the partitioning of a rectangle of pixel
data into rectangular subregions (subrectangles) each of which consists
of pixels of a single value and the union of which comprises the
original rectangular region. The near-optimal partition of a given
rectangle into such subrectangles is relatively easy to compute.

The encoding consists of a background pixel value, Vb (typically the
most prevalent pixel value in the rectangle) and a count N, followed
by a list of N subrectangles, each of which consists of a tuple
<v, x, y, w, h> where v (!= Vb) is the pixel value, (x,
y) are the coordinates of the subrectangle relative to the top-left
corner of the rectangle, and (w, h) are the width and height of the
subrectangle. The client can render the original rectangle by drawing a
filled rectangle of the background pixel value and then drawing a
filled rectangle corresponding to each subrectangle.

On the wire, the data begins with the header:

		No. of bytes
		Type
		Description

		4
		U32
		number-of-subrectangles

		bytesPerPixel
		PIXEL
		background-pixel-value

This is followed by number-of-subrectangles instances of the
following structure:

		No. of bytes
		Type
		Description

		bytesPerPixel
		PIXEL
		subrect-pixel-value

		2
		U16
		x-position

		2
		U16
		y-position

		2
		U16
		width

		2
		U16
		height

1.7.6.4 CoRRE Encoding

CoRRE stands for compressed rise-and-run-length encoding and as its
name implies, it is a variant of the above RRE Encoding and as such
essentially a two-dimensional analogue of run-length encoding.

The only difference between CoRRE and RRE is that the position, width
and height of the subrectangles are limited to a maximum of 255 pixels.
Because of this, the server needs to produce several rectangles in
order to cover a larger area. The Hextile Encoding is probably a
better choice in the majority of cases.

On the wire, the data begins with the header:

		No. of bytes
		Type
		Description

		4
		U32
		number-of-subrectangles

		bytesPerPixel
		PIXEL
		background-pixel-value

This is followed by number-of-subrectangles instances of the
following structure:

		No. of bytes
		Type
		Description

		bytesPerPixel
		PIXEL
		subrect-pixel-value

		1
		U8
		x-position

		1
		U8
		y-position

		1
		U8
		width

		1
		U8
		height

1.7.6.5 Hextile Encoding

Hextile is a variation on the RRE idea. Rectangles are split up into
16x16 tiles, allowing the dimensions of the subrectangles to be
specified in 4 bits each, 16 bits in total. The rectangle is split into
tiles starting at the top left going in left-to-right, top-to-bottom
order. The encoded contents of the tiles simply follow one another in
the predetermined order. If the width of the whole rectangle is not an
exact multiple of 16 then the width of the last tile in each row will
be correspondingly smaller. Similarly if the height of the whole
rectangle is not an exact multiple of 16 then the height of each tile
in the final row will also be smaller.

Each tile is either encoded as raw pixel data, or as a variation on
RRE. Each tile has a background pixel value, as before. The background
pixel value does not need to be explicitly specified for a given tile
if it is the same as the background of the previous tile. However the
background pixel value may not be carried over if the previous tile was
raw. If all of the subrectangles of a tile have the same pixel value,
this can be specified once as a foreground pixel value for the whole
tile. As with the background, the foreground pixel value can be left
unspecified, meaning it is carried over from the previous tile. The
foreground pixel value may not be carried over if the previous tile was
raw or had the SubrectsColored bit set. It may, however, be carried
over from a previous tile with the AnySubrects bit clear, as long as
that tile itself carried over a valid foreground from its previous
tile.

So the data consists of each tile encoded in order. Each tile begins
with a subencoding type byte, which is a mask made up of a number of
bits:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		
		subencoding-mask:

		
		
		1
		Raw

		
		
		2
		BackgroundSpecified

		
		
		4
		ForegroundSpecified

		
		
		8
		AnySubrects

		
		
		16
		SubrectsColoured

If the Raw bit is set then the other bits are irrelevant; width *
height pixel values follow (where width and height are the width
and height of the tile). Otherwise the other bits in the mask are as
follows:

		BackgroundSpecified

		If set, a pixel value follows which specifies the background colour
for this tile:

		No. of bytes
		Type
		Description

		bytesPerPixel
		PIXEL
		background-pixel-value

The first non-raw tile in a rectangle must have this bit set. If
this bit isn’t set then the background is the same as the last
tile.

		ForegroundSpecified

		If set, a pixel value follows which specifies the foreground colour
to be used for all subrectangles in this tile:

		No. of bytes
		Type
		Description

		bytesPerPixel
		PIXEL
		foreground-pixel-value

If this bit is set then the SubrectsColoured bit must be zero.

		AnySubrects

		If set, a single byte follows giving the number of subrectangles
following:

		No. of bytes
		Type
		Description

		1
		U8
		number-of-subrectangles

If not set, there are no subrectangles (i.e. the whole tile is just
solid background colour).

		SubrectsColoured

		If set then each subrectangle is preceded by a pixel value giving
the colour of that subrectangle, so a subrectangle is:

		No. of bytes
		Type
		Description

		bytesPerPixel
		PIXEL
		subrect-pixel-value

		1
		U8
		x-and-y-position

		1
		U8
		width-and-height

If not set, all subrectangles are the same colour, the foreground
colour; if the ForegroundSpecified bit wasn’t set then the
foreground is the same as the last tile. A subrectangle is:

		No. of bytes
		Type
		Description

		1
		U8
		x-and-y-position

		1
		U8
		width-and-height

The position and size of each subrectangle is specified in two bytes,
x-and-y-position and width-and-height. The most-significant four
bits of x-and-y-position specify the X position, the
least-significant specify the Y position. The most-significant four
bits of width-and-height specify the width minus one, the
least-significant specify the height minus one.

1.7.6.6 zlib Encoding

The zlib encoding uses zlib [3] to compress rectangles encoded
according to the Raw Encoding. A single zlib “stream” object is used
for a given RFB connection, so that zlib rectangles must be encoded and
decoded strictly in order.

		[3]		(1, 2, 3) see http://www.gzip.org/zlib/

		No. of bytes
		Type
		Description

		4
		U32
		length

		length
		U8 array
		zlibData

The zlibData, when uncompressed, represents a rectangle according to
the Raw Encoding.

1.7.6.7 Tight Encoding

Tight encoding provides efficient compression for pixel data. To
reduce implementation complexity, the width of any Tight-encoded
rectangle cannot exceed 2048 pixels. If a wider rectangle is desired,
it must be split into several rectangles and each one should be encoded
separately.

The first byte of each Tight-encoded rectangle is a
compression-control byte:

		No. of bytes
		Type
		Description

		1
		U8
		compression-control

The least significant four bits of the compression-control byte
inform the client which zlib compression streams should be reset before
decoding the rectangle. Each bit is independent and corresponds to a
separate zlib stream that should be reset:

		Bit
		Description

		0
		Reset stream 0

		1
		Reset stream 1

		2
		Reset stream 2

		3
		Reset stream 3

One of three possible compression methods are supported in the Tight
encoding. These are BasicCompression, FillCompression and
JpegCompression. If the bit 7 (the most significant bit) of the
compression-control byte is 0, then the compression type is
BasicCompression. In that case, bits 7-4 (the most significant four
bits) of compression-control should be interpreted as follows:

		Bits
		Binary value
		Description

		5-4
		00
		Use stream 0

		
		01
		Use stream 1

		
		10
		Use stream 2

		
		11
		Use stream 3

		6
		0
		—

		
		1
		read-filter-id

		7
		0
		BasicCompression

Otherwise, if the bit 7 of compression-control is set to 1, then the
compression method is either FillCompression or
JpegCompression, depending on other bits of the same byte:

		Bits
		Binary value
		Description

		7-4
		1000
		FillCompression

		
		1001
		JpegCompression

		
		any other
		Invalid

Note: JpegCompression may only be used when bits-per-pixel is
either 16 or 32 and the client has advertized a quality level using the
JPEG Quality Level Pseudo-encoding.

The Tight encoding makes use of a new type TPIXEL (Tight pixel).
This is the same as a PIXEL for the agreed pixel format, except
where true-colour-flag is non-zero, bits-per-pixel is 32, depth
is 24 and all of the bits making up the red, green and blue intensities
are exactly 8 bits wide. In this case a TPIXEL is only 3 bytes
long, where the first byte is the red component, the second byte is the
green component, and the third byte is the blue component of the pixel
color value.

The data following the compression-control byte depends on the
compression method.

		FillCompression

		If the compression type is FillCompression, then the only pixel
value follows, in TPIXEL format. This value applies to all
pixels of the rectangle.

		JpegCompression

		If the compression type is JpegCompression, the following data
stream looks like this:

		No. of bytes
		Type
		Description

		1-3
		
		length in compact representation

		length
		U8 array
		jpeg-data

length is compactly represented in one, two or three bytes,
according to the following scheme:

		Value
		Description

		0xxxxxxx
		for values 0..127

		1xxxxxxx 0yyyyyyy
		for values 128..16383

		1xxxxxxx 1yyyyyyy zzzzzzzz
		for values 16384..4194303

Here each character denotes one bit, xxxxxxx are the least
significant 7 bits of the value (bits 0-6), yyyyyyy are bits 7-13,
and zzzzzzzz are the most significant 8 bits (bits 14-21). For
example, decimal value 10000 should be represented as two bytes:
binary 10010000 01001110, or hexadecimal 90 4E.

The jpeg-data is a JFIF stream.

		BasicCompression

		If the compression type is BasicCompression and bit 6 (the
read-filter-id bit) of the compression-control byte was set to
1, then the next (second) byte specifies filter-id which tells
the decoder what filter type was used by the encoder to pre-process
pixel data before the compression. The filter-id byte can be one
of the following:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		
		filter-id

		
		
		0
		CopyFilter (no filter)

		
		
		1
		PaletteFilter

		
		
		2
		GradientFilter

If bit 6 of the compression-control byte is set to 0 (no
filter-id byte), then the CopyFilter is used.

		CopyFilter

		When the CopyFilter is active, raw pixel values in
TPIXEL format will be compressed. See below for details on
the compression.

		PaletteFilter

		The PaletteFilter converts true-color pixel data to indexed
colors and a palette which can consist of 2..256 colors. If the
number of colors is 2, then each pixel is encoded in 1 bit,
otherwise 8 bits are used to encode one pixel. 1-bit encoding
is performed such way that the most significant bits correspond
to the leftmost pixels, and each row of pixels is aligned to
the byte boundary. When the PaletteFilter is used, the
palette is sent before the pixel data. The palette begins with
an unsigned byte which value is the number of colors in the
palette minus 1 (i.e. 1 means 2 colors, 255 means 256 colors in
the palette). Then follows the palette itself which consist of
pixel values in TPIXEL format.

		GradientFilter

		The GradientFilter pre-processes pixel data with a simple
algorithm which converts each color component to a difference
between a “predicted” intensity and the actual intensity. Such
a technique does not affect uncompressed data size, but helps
to compress photo-like images better. Pseudo-code for
converting intensities to differences follows:

P[i,j] := V[i-1,j] + V[i,j-1] - V[i-1,j-1];
if (P[i,j] < 0) then P[i,j] := 0;
if (P[i,j] > MAX) then P[i,j] := MAX;
D[i,j] := V[i,j] - P[i,j];

Here V[i,j] is the intensity of a color component for a
pixel at coordinates (i,j). For pixels outside the current
rectangle, V[i,j] is assumed to be zero (which is relevant
for P[i,0] and P[0,j]). MAX is the maximum intensity
value for a color component.

Note: The GradientFilter may only be used when
bits-per-pixel is either 16 or 32.

After the pixel data has been filtered with one of the above three
filters, it is compressed using the zlib library. But if the data
size after applying the filter but before the compression is less
then 12, then the data is sent as is, uncompressed. Four separate
zlib streams (0..3) can be used and the decoder should read the
actual stream id from the compression-control byte (see
[NOTE1]).

If the compression is not used, then the pixel data is sent as is,
otherwise the data stream looks like this:

		No. of bytes
		Type
		Description

		1-3
		
		length in compact representation

		length
		U8 array
		zlibData

length is compactly represented in one, two or three bytes, just
like in the JpegCompression method (see above).

		[NOTE1]		The decoder must reset the zlib streams before decoding the
rectangle, if some of the bits 0, 1, 2 and 3 in the
compression-control byte are set to 1. Note that the decoder must
reset the indicated zlib streams even if the compression type is
FillCompression or JpegCompression.

1.7.6.8 zlibhex Encoding

The zlibhex encoding uses zlib [3] to optionally compress
subrectangles according to the Hextile Encoding. Refer to the
hextile encoding for information on how the rectangle is divided into
subrectangles and other basic properties of subrectangles. One zlib
“stream” object is used for subrectangles encoded according to the
Raw subencoding and one zlib “stream” object is used for all other
subrectangles.

The hextile subencoding bitfield is extended with these bits:

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		
		subencoding-mask:

		
		
		32
		ZlibRaw

		
		
		64
		Zlib

If either of the ZlibRaw or the Zlib bit is set, the
subrectangle is compressed using zlib, like this:

		No. of bytes
		Type
		Description

		2
		U16
		length

		length
		U8 array
		zlibData

Like the Raw bit in hextile, the ZlibRaw bit in zlibhex cancels
all other bits and the subrectangle is encoded using the first zlib
“stream” object. The zlibData, when uncompressed, should in this case
be interpreted as the Raw data in the hextile encoding.

If the Zlib bit is set, the rectangle is encoded using the second
zlib “stream” object. The zlibData, when uncompressed, represents a
plain hextile rectangle according to the lower 5 bits in the
subencoding.

If neither the ZlibRaw nor the Zlib bit is set, the
subrectangle follows the rules described in the Hextile Encoding.

1.7.6.9 ZRLE Encoding

ZRLE stands for Zlib [3] Run-Length Encoding, and combines zlib
compression, tiling, palettisation and run-length encoding. On the
wire, the rectangle begins with a 4-byte length field, and is followed
by that many bytes of zlib-compressed data. A single zlib “stream”
object is used for a given RFB protocol connection, so that ZRLE
rectangles must be encoded and decoded strictly in order.

		No. of bytes
		Type
		Description

		4
		U32
		length

		length
		U8 array
		zlibData

The zlibData when uncompressed represents tiles of 64x64 pixels in
left-to-right, top-to-bottom order, similar to hextile. If the width of
the rectangle is not an exact multiple of 64 then the width of the last
tile in each row is smaller, and if the height of the rectangle is not
an exact multiple of 64 then the height of each tile in the final row
is smaller.

ZRLE makes use of a new type CPIXEL (compressed pixel). This is the
same as a PIXEL for the agreed pixel format, except where
true-colour-flag is non-zero, bits-per-pixel is 32, depth is 24
or less and all of the bits making up the red, green and blue
intensities fit in either the least significant 3 bytes or the most
significant 3 bytes. In this case a CPIXEL is only 3 bytes long,
and contains the least significant or the most significant 3 bytes as
appropriate. bytesPerCPixel is the number of bytes in a CPIXEL.

Note that for the corner case where bits-per-pixel is 32 and depth
is 16 or less (this is a corner case, since the client is much
better off using 16 or even 8 bits-per-pixels) a CPIXEL is still
3 bytes long. By convention, the three least significant bytes are used
when both the three least and the three most significant bytes would
cover the used bits.

Each tile begins with a subencoding type byte. The top bit of this
byte is set if the tile has been run-length encoded, clear otherwise.
The bottom seven bits indicate the size of the palette used: zero means
no palette, one means that the tile is of a single colour, 2 to 127
indicate a palette of that size. The possible values of subencoding
are:

		0

		Raw pixel data. width * height pixel values follow (where width
and height are the width and height of the tile):

		No. of bytes
		Type
		Description

		width * height * bytesPerCPixel
		CPIXEL array
		pixels

		1

		A solid tile consisting of a single colour. The pixel value
follows:

		No. of bytes
		Type
		Description

		bytesPerCPixel
		CPIXEL
		pixelValue

		2 to 16

		Packed palette types. Followed by the palette, consisting of
paletteSize (=*subencoding*) pixel values. Then the packed pixels
follow, each pixel represented as a bit field yielding an index
into the palette (0 meaning the first palette entry). For
paletteSize 2, a 1-bit field is used, for paletteSize 3 or 4 a
2-bit field is used and for paletteSize from 5 to 16 a 4-bit
field is used. The bit fields are packed into bytes, the most
significant bits representing the leftmost pixel (i.e. big endian).
For tiles not a multiple of 8, 4 or 2 pixels wide (as appropriate),
padding bits are used to align each row to an exact number of bytes.

		No. of bytes
		Type
		Description

		paletteSize * bytesPerCPixel
		CPIXEL array
		palette

		m
		U8 array
		packedPixels

where m is the number of bytes representing the packed pixels.
For paletteSize of 2 this is floor((width + 7) / 8) * height,
for paletteSize of 3 or 4 this is
floor((width + 3) / 4) * height, for paletteSize of 5 to 16
this is floor((width + 1) / 2) * height.

		17 to 127

		Unused (no advantage over palette RLE).

		128

		Plain RLE. Consists of a number of runs, repeated until the tile is
done. Runs may continue from the end of one row to the beginning of
the next. Each run is a represented by a single pixel value
followed by the length of the run. The length is represented as one
or more bytes. The length is calculated as one more than the sum of
all the bytes representing the length. Any byte value other than
255 indicates the final byte. So for example length 1 is
represented as [0], 255 as [254], 256 as [255,0], 257 as [255,1],
510 as [255,254], 511 as [255,255,0] and so on.

		No. of bytes
		Type
		[Value]
		Description

		bytesPerCPixel
		CPIXEL
		
		pixelValue

		r
		U8 array
		255
		

		1
		U8
		
		(runLength - 1) % 255

Where r is floor((runLength - 1) / 255).

		129

		Unused.

		130 to 255

		Palette RLE. Followed by the palette, consisting of
paletteSize = (subencoding - 128) pixel values:

		No. of bytes
		Type
		Description

		paletteSize * bytesPerCPixel
		CPIXEL array
		palette

Then as with plain RLE, consists of a number of runs, repeated
until the tile is done. A run of length one is represented simply
by a palette index:

		No. of bytes
		Type
		Description

		1
		U8
		paletteIndex

A run of length more than one is represented by a palette index
with the top bit set, followed by the length of the run as for
plain RLE.

		No. of bytes
		Type
		[Value]
		Description

		1
		U8
		
		paletteIndex + 128

		r
		U8 array
		255
		

		1
		U8
		
		(runLength - 1) % 255

Where r is floor((runLength - 1) / 255).

1.7.7 Pseudo-encodings

1.7.7.1 JPEG Quality Level Pseudo-encoding

Specifies the desired quality from the JPEG encoder. Encoding number
-23 implies high JPEG quality and -32 implies low JPEG quality. Low
quality can be useful in low bandwidth situations. If the JPEG quality
level is not specified, JpegCompression is not used in the Tight
Encoding.

The quality level concerns lossy compression and hence the setting is a
tradeoff between image quality and bandwidth. The specification defines
neither what bandwidth is required at a certain quality level nor what
image quality you can expect. The quality level is also just a hint to
the server.

1.7.7.2 Cursor Pseudo-encoding

A client which requests the Cursor pseudo-encoding is declaring that
it is capable of drawing a mouse cursor locally. This can significantly
improve perceived performance over slow links. The server sets the
cursor shape by sending a pseudo-rectangle with the Cursor
pseudo-encoding as part of an update. The pseudo-rectangle’s
x-position and y-position indicate the hotspot of the cursor, and
width and height indicate the width and height of the cursor in
pixels. The data consists of width * height pixel values followed
by a bitmask. The bitmask consists of left-to-right, top-to-bottom
scanlines, where each scanline is padded to a whole number of bytes
floor((width + 7) / 8). Within each byte the most significant bit
represents the leftmost pixel, with a 1-bit meaning the corresponding
pixel in the cursor is valid.

		No. of bytes
		Type
		Description

		width * height * bytesPerPixel
		PIXEL array
		cursor-pixels

		floor((width + 7) / 8) * height
		U8 array
		bitmask

1.7.7.3 X Cursor Pseudo-encoding

A client which requests the X Cursor pseudo-encoding is declaring
that it is capable of drawing a mouse cursor locally. This can
significantly improve perceived performance over slow links. The
server sets the cursor shape by sending a pseudo-rectangle with the
X Cursor pseudo-encoding as part of an update.

The pseudo-rectangle’s x-position and y-position indicate the
hotspot of the cursor, and width and height indicate the width and
height of the cursor in pixels.

The data consists of the primary and secondary colours for the cursor,
followed by one bitmap for the colour and one bitmask for the
transparency. The bitmap and bitmask both consist of left-to-right,
top-to-bottom scanlines, where each scanline is padded to a whole
number of bytes floor((width + 7) / 8). Within each byte the most
significant bit represents the leftmost pixel, with a 1-bit meaning the
corresponding pixel should use the primary colour, or that the pixel is
valid.

		No. of bytes
		Type
		Description

		1
		U8
		primary-r

		1
		U8
		primary-g

		1
		U8
		primary-b

		1
		U8
		secondary-r

		1
		U8
		secondary-g

		1
		U8
		secondary-b

		floor((width + 7) / 8) * height
		U8 array
		bitmap

		floor((width + 7) / 8) * height
		U8 array
		bitmask

1.7.7.4 DesktopSize Pseudo-encoding

A client which requests the DesktopSize pseudo-encoding is declaring
that it is capable of coping with a change in the framebuffer width
and/or height.

The server changes the desktop size by sending a pseudo-rectangle with
the DesktopSize pseudo-encoding. The pseudo-rectangle’s x-position
and y-position are ignored, and width and height indicate the new
width and height of the framebuffer. There is no further data
associated with the pseudo-rectangle.

The semantics of the DesktopSize pseudo-encoding were originally not
clearly defined and as a results there are multiple differing
implementations in the wild. Both the client and server need to take
special steps to ensure maximum compatibility.

In the initial implementation the DesktopSize pseudo-rectangle was
sent in its own update without any modifications to the framebuffer
data. The client would discard the framebuffer contents upon receiving
this pseudo-rectangle and the server would consider the entire
framebuffer to be modified.

A later implementation sent the DesktopSize pseudo-rectangle together
with modifications to the framebuffer data. It also expected the client
to retain the framebuffer contents as those modifications could be from
after the framebuffer resize had occurred on the server.

The semantics defined here retain compatibility with both of two older
implementations.

1.7.7.4.1 Server Semantics

The update containing the pseudo-rectangle should not contain any
rectangles that change the framebuffer data as that will most likely be
discarded by the client and will have to be resent later.

The server should assume that the client discards the framebuffer data
when receiving a DesktopSize pseudo-rectangle. It should therefore
not use any encoding that relies on the previous contents of the
framebuffer. The server should also consider the entire framebuffer to
be modified.

Some early client implementations require the DesktopSize
pseudo-rectangle to be the very last rectangle in an update. Servers
should make every effort to support these.

The server should only send a DesktopSize pseudo-rectangle when an
actual change of the framebuffer dimensions has occurred. Some clients
respond to a DesktopSize pseudo-rectangle in a way that could send
the system into an infinite loop if the server sent out the
pseudo-rectangle for anything other than an actual change.

1.7.7.4.2 Client Semantics

The client should assume that the server expects the framebuffer data
to be retained when the framebuffer dimensions change. This requirement
can be satisfied either by actually retaining the framebuffer data, or
by making sure that incremental is set to non-zero in the next
FramebufferUpdateRequest.

The principle of one framebuffer update being a transition from one
valid state to another does not hold for updates with the DesktopSize
pseudo-rectangle as the framebuffer contents can temporarily be
partially or completely undefined. Clients should try to handle this
gracefully, e.g. by showing a black framebuffer or delay the screen
update until a proper update of the framebuffer contents has been
received.

1.7.7.5 LastRect Pseudo-encoding

A client which requests the LastRect pseudo-encoding is declaring
that it does not need the exact number of rectangles in a
FramebufferUpdate message. Instead, it will stop parsing when it
reaches a LastRect rectangle. A server may thus start transmitting
the FramebufferUpdate message before it knows exactly how many
rectangles it is going to transmit, and the server typically advertises
this situation by saying that it is going to send 65535 rectangles,
but it then stops with a LastRect instead of sending all of them.
There is no further data associated with the pseudo-rectangle.

1.7.7.6 Compression Level Pseudo-encoding

Specifies the desired compression level. Encoding number -247 implies
high compression level, -255 implies low compression level. Low
compression level can be useful to get low latency in medium to high
bandwidth situations and high compression level can be useful in low
bandwidth situations.

The compression level concerns lossless compression, and hence the
setting is a tradoff between CPU time and bandwidth. It is therefore
probably difficult to define exact cut-off points for which compression
levels should be used for any given bandwidth. The compression level is
just a hint for the server, and there is no specification for what a
specific compression level means.

1.7.7.7 QEMU Pointer Motion Change Psuedo-encoding

A client that supports this encoding declares that is able to send
pointer motion events either as absolute coordinates, or relative
deltas. The server can switch between different pointer motion modes
by sending a FrameBufferUpdate message. If the x-position in
the update is 1, the server is requesting absolute coordinates, which
is the RFB protocol default when this encoding is not supported. If
the x-position in the update is 0, the server is requesting relative
deltas.

When relative delta mode is active, the semantics of the
PointerEvent message are changed. The x-position and y-position
fields are to be treated as S16 quantities, denoting the delta
from the last position. A client can compute the signed deltas with
the logic:

uint16 dx = x + 0x7FFF - last_x
uint16 dy = y + 0x7FFF - last_y

If the client needs to send an updated button-mask without
any associated motion, it should use the value 0x7FFF in the
x-position and y-position fields of the PointerEvent

Servers are advised to implement this psuedo-encoding if the virtual
desktop is associated a input device that expects relative coordinates,
for example, a virtual machine with a PS/2 mouse. Prior to this
extension, a server with such a input device would have to perform the
absolute to relative delta conversion itself. This can result in the
client pointer hitting an “invisible wall”.

Clients are advised that when generating events in relative pointer
mode, they should grab and hide the local pointer. When the local
pointer hits any edge of the client window, it should be warped
back by 100 pixels. This ensures that continued movement of the
user’s input device will continue to generate relative deltas and
thus avoid the “invisible wall” problem.

1.7.7.8 QEMU Extended Key Event Psuedo-encoding

A client that supports this encoding is indicating that it is able
to provide raw keycodes as an alternative to keysyms. If a server
wishes to receive raw keycodes it will send a FrameBufferUpdate
with the matching psuedo-encoding and the num-rectanges field
set to 1, however, no rectanges will actually be sent. After receiving
this notification, clients may optionally use the
QEMU Extended Key Event Message to send key events, in preference
to the traditional KeyEvent message.

1.7.7.9 QEMU Audio Psuedo-encoding

A client that supports this encoding is indicating that it is able
to receive an audio data stream. If a server wishes to send audio
data it will send a FrameBufferUpdate with the matching
psuedo-encoding and the num-rectangles field set to 1, however, no
rectangles will actually be sent. After receiving this notification,
clients may optionally use the QEMU Audio Client Message.

1.7.7.10 gii Pseudo-encoding

A client that supports the General Input Interface extension starts by
requesting the gii pseudo-encoding declaring that it is capable of
accepting the gii Server Message. The server, in turn, declares that
it is capable of accepting the gii Client Message by sending a gii
Server Message of subtype version.

Requesting the gii pseudo-encoding is the first step when a client
wants to use the gii extension of the RFB protocol. The gii
extension is used to provide a more powerful input protocol for cases
where the standard input model is insufficient. It supports relative
mouse movements, mouses with more than 8 buttons and mouses with more
than three axes. It even supports joysticks and gamepads.

1.7.7.11 DesktopName Pseudo-encoding

A client which requests the DesktopName pseudo-encoding is declaring
that it is capable of coping with a change of the desktop name. The
server changes the desktop name by sending a pseudo-rectangle with the
DesktopName pseudo-encoding in an update. The pseudo-rectangle’s
x-position, y-position, width, and height must be zero. After the
rectangle header, a string with the new name follows.

		No. of bytes
		Type
		Description

		4
		U32
		name-length

		name-length
		U8 array
		name-string

The text encoding used for name-string is UTF-8.

1.7.7.12 ExtendedDesktopSize Pseudo-encoding

A client which requests the ExtendedDesktopSize pseudo-encoding is
declaring that it is capable of coping with a change in the
framebuffer width, height, and/or screen configuration. This encoding
is used in conjunction with the SetDesktopSize message. If a server
supports the ExtendedDesktopSize encoding, it must also have basic
support for the SetDesktopSize message although it may deny all
requests to change the screen layout.

The ExtendedDesktopSize pseudo-encoding is designed to replace the
simpler DesktopSize one. Servers and clients should support both for
maximum compatibility, but a server must only send the extended
version to a client asking for both. The semantics of DesktopSize are
not as well-defined as for ExtendedDesktopSize and handling both at
the same time would require needless complexity in the client.

The server must send an ExtendedDesktopSize rectangle in response to
a FramebufferUpdateRequest with incremental set to zero, assuming
the client has requested the ExtendedDesktopSize pseudo-encoding
using the SetEncodings message. This requirement is needed so that
the client has a reliable way of fetching the initial screen
configuration, and to determine if the server supports the
SetDesktopSize message.

A consequence of this is that a client must not respond to an
ExtendedDesktopSize rectangle by sending a FramebufferUpdateRequest
with incremental set to zero. Doing so would make the system go into
an infinite loop.

The server must also send an ExtendedDesktopSize rectangle in
response to a SetDesktopSize message, indicating the result.

For a full description of server behaviour as a result of the
SetDesktopSize message, SetDesktopSize.

Rectangles sent as a result of a SetDesktopSize message must be sent
as soon as possible. Rectangles sent for other reasons may be subjected
to delays imposed by the server.

An update containing an ExtendedDesktopSize rectangle must not
contain any changes to the framebuffer data, neither before nor after
the ExtendedDesktopSize rectangle.

The pseudo-rectangle’s x-position indicates the reason for the
change:

		0

		The screen layout was changed via non-RFB means on the server. For
example the server may have provided means for server-side
applications to manipulate the screen layout. This code is also
used when the client sends a non-incremental
FrameBufferUpdateRequest to learn the server’s current state.

		1

		The client receiving this message requested a change of the screen
layout. The change may or may not have happened depending on server
policy or available resources. The status code in the y-position
field must be used to determine which.

		2

		Another client requested a change of the screen layout and the
server approved it. A rectangle with this code is never sent if the
server denied the request.

More reasons may be added in the future. Clients should treat an
unknown value as a server-side change (i.e. as if x-position was set
to zero).

The pseudo-rectangle’s y-position indicates the status code for a
change requested by a client:

		Code
		Description

		0
		No error

		1
		Resize is administratively prohibited

		2
		Out of resources

		3
		Invalid screen layout

This field shall be set to zero by the server and ignored by clients
when not defined. Other error codes may be added in the future and
clients must treat them as an unknown failure.

The width and height indicates the new width and height of the
framebuffer.

The encoding data is defined as:

		No. of bytes
		Type
		Description

		1
		U8
		number-of-screens

		3
		
		padding

		number-of-screens * 16
		SCREEN array
		screens

The number-of-screens field indicates the number of active screens
and allows for multi head configurations. It also indicates how many
SCREEN structures that follows. These are defined as:

		No. of bytes
		Type
		Description

		4
		U32
		id

		2
		U16
		x-position

		2
		U16
		y-position

		2
		U16
		width

		2
		U16
		height

		4
		U32
		flags

The id field contains an arbitrary value that the server and client
can use to map RFB screens to physical screens. The value must be
unique in the current set of screens and must be preserved for the
lifetime of that RFB screen. New ids are assigned by whichever side
creates the screen. An id may be reused if there has been a subsequent
update of the screen layout where the id was not used.

The flags field is currently unused. Clients and servers must ignore,
but preserve, any bits it does not understand. For new screens, those
bits must be set to zero.

Note that a simple client which does not support multi head does not
need to parse the list of screens and can simply display the entire
framebuffer.

1.7.7.13 xvp Pseudo-encoding

A client which requests the xvp pseudo-encoding is declaring that it
wishes to use the xvp extension. If the server supports this, it
replies with a message of type xvp Server Message, using an
xvp-message-code of XVP_INIT. This informs the client that it may
then subsequently send messages of type xvp Client Message.

1.7.7.14 Fence Pseudo-encoding

A client which requests the Fence pseudo-encoding is declaring that
it supports and/or wishes to use the Fence extension. The server
should send a ServerFence the first time it sees a SetEncodings
message with the Fence pseudo-encoding, in order to inform the client
that this extension is supported. The message can use any flags or
payload.

1.7.7.15 ContinuousUpdates Pseudo-encoding

A client which requests the ContinuousUpdates pseudo-encoding is
declaring that it wishes to use the EnableContinuousUpdates
extension. The server must send a EndOfContinuousUpdates message the
first time it sees a SetEncodings message with the
ContinuousUpdates pseudo-encoding, in order to inform the client that
the extension is supported.

1.7.7.16 JPEG Fine-Grained Quality Level Pseudo-encoding

The JPEG Fine-Grained Quality Level pseudo-encoding allows the image
quality to be specified on a 0 to 100 scale, with -512 corresponding to image
quality 0 and -412 corresponding to image quality 100. This pseudo-encoding
was originally intended for use with JPEG-encoded subrectangles, but it could
be used with other types of image encoding as well.

1.7.7.17 JPEG Subsampling Level Pseudo-Encoding

The JPEG Subsampling Level pseudo-encoding allows the level of chrominance
subsampling to be specified. When a JPEG image is encoded, the RGB pixels are
first converted to YCbCr, a colorspace in which brightness (luminance) is
separated from color (chrominance.) Since the human eye is more sensitive to
spatial changes in brightness than to spatial changes in color, the chrominance
components (Cb, Cr) can be subsampled to save bandwidth without losing much
image quality (on smooth images, such as photographs, chrominance subsampling
is often not distinguishable by the human eye.) Subsampling can be implemented
either by averaging together groups of chrominance components or by simply
picking one component from the group and discarding the rest.

The values for this pseudo-encoding are defined as follows:

		-768 = 1X chrominance subsampling (no chrominance subsampling).

		Chrominance components are sent for every pixel in the source image.

		-767 = 4X chrominance subsampling. Chrominance components are sent for every

		fourth pixel in the source image. This would typically be implemented
using 4:2:0 subsampling (2X subsampling in both X and Y directions), but
it could also be implemented using 4:1:1 subsampling (4X subsampling in
the X direction.)

		-766 = 2X chrominance subsampling. Chrominance components are sent for every

		other pixel in the source image. This would typically be implemented
using 4:2:2 subsampling (2X subsampling in the X direction.)

		-765 = Grayscale. All chrominance components in the source image are

		discarded.

		-764 = 8X chrominance subsampling. Chrominance components are sent for every

		8th pixel in the source image. This would typically be implemented
using 4:1:0 subsampling (4X subsampling in the X direction and 2X
subsampling in the Y direction.)

		-763 = 16X chrominance subsampling. Chrominance components are sent for every

		16th pixel in the source image. This would typically be implemented
using 4X subsampling in both X and Y directions.

This pseudo-encoding was originally intended for use with JPEG-encoded
subrectangles, but it could be used with other types of image encoding as well.

_TigerVNC: http://tigervnc.svn.sourceforge.net/viewvc/tigervnc/rfbproto/

 © Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

appendix.html

 Navigation

 		
 index

 		
 modules |

 		VNCDoTool 0.9.0.dev0 documentation »

Appendix I

This appendix contains the community RFB protocol document maintained by the TigerVNC_ project.

 © Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		VNCDoTool 0.9.0.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/up.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		VNCDoTool 0.9.0.dev0 documentation »

 All modules for which code is available

		vncdotool.client

 © Copyright 2013, Marc Sibson.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

